Hippocampus
-
Models of the neurobiology of memory have been based on the idea that information is stored as distributed patterns of altered synaptic weights in neuronal networks. Accordingly, studies have shown that post-training treatments that alter synaptic weights, such as the induction of long-term potentiation (LTP), can interfere with retrieval. In these studies, LTP induction has been relegated to the status of a methodological procedure that serves the sole purpose of disturbing synaptic activity in order to impair memory. ⋯ Studies have shown that stress produces potent effects on hippocampal physiology, generates long-lasting memories, and induces retrograde amnesia, all through mechanisms in common with LTP. Based on these findings, we have developed the hypothesis that a stressful experience generates an endogenous form of hippocampal LTP that substitutes a new memory representation for preexisting representations. In summary, our hypothesis implicates the induction of endogenous synaptic plasticity by stress in the formation of emotional memories and in retrograde amnesia.
-
Clinical Trial
Medial temporal lobe activation during encoding and retrieval of novel face-name pairs.
The human medial temporal lobe (MTL) is known to be involved in declarative memory, yet the exact contributions of the various MTL structures are not well understood. In particular, the data as to whether the hippocampal region is preferentially involved in the encoding and/or retrieval of associative memory have not allowed for a consensus concerning its specific role. ⋯ Activity for retrieval of associative information was greater than for non-associative information in the right hippocampal region also, as well as in the left perirhinal cortex, right entorhinal cortex, and right parahippocampal cortex. The implications of these data for a clear functional distinction between the hippocampal region and the MTL cortical structures are discussed.
-
There is increasing evidence that transcription factors (TFs) play a critical role in maintaining later phases of hippocampal long-term potentiation (LTP). We have been led to study the role in synaptic plasticity of the powerful, yet generally unheralded, NF-kappaB TF because it may serve as both a signaling molecule after its activation at the synapse and then a transcription initiator upon reaching the nucleus. In the present study, we show that LTP activates NF-kappaB in the intact mouse hippocampus. ⋯ In the four subfields of hippocampus examined--granule cell layer, hilus of the dentate gyrus, CA3 and CA1 pyramidal fields of the hippocampal gyrus--the highest levels of activated NF-kappaB, statistically significant in all cases were found after HFS. In certain comparisons, LFS animals also showed significant elevation with respect to CT. These results support the role of NF-kappaB as part of the synaptic signaling and transcriptional regulation mechanism required in long-term plasticity, emphasizing the combinatorial nature of TF function.
-
The subiculum is a limbic cortical region that receives inputs from hippocampus and other parahippocampal regions. We used horizontal brain slices to study the modulatory effects of muscarinic receptor activation on excitatory afferent systems of the subiculum. Multiple inputs are preserved in these slices. ⋯ The NMDA receptor antagonist CPP (10 microM) prevented facilitation of responses to repetitive stimulation in the presence of carbachol. We conclude that CA1, PreS, and MEC afferents to the subiculum exhibit CCh sensitivity similar to that established for area CA3 afferents to CA1, and LEC afferents to subiculum exhibit CCh resistance. Our data suggest that much of the hippocampal formation circuitry is modulated by CCh and the properties of this modulation can explain some specific firing characteristics of hippocampal formation neurons in "cholinergic" versus "noncholinergic" brain states.
-
Transgenic mice are overtaking the role of model animals in neuroscience. They are used in developmental, anatomical, and physiological as well as experimental neurology. However, most results on the organization of the nervous system derive from the rat. ⋯ The postsynaptic targets of neurons terminating in the perisomatic (parvalbumin), proximal (calbindin), and distal (somatostatin) dendritic region, as well as on other interneurons (calretinin), also matched those found in the rat. However, a few significant differences could also be observed between the two species in addition to the already described immunoreactivity of mossy cells for calretinin: the absence of spiny calretinin-immunoreactive interneurons in the CA3 region, sparse contacts between calretinin-immunoreactive interneurons, and the axon staining for somatostatin and neuropil labeling for cholecystokinin. We can conclude that the morphofunctional classification of interneurons established in the rat is largely valid for mouse strains used in transgenic procedures.