Hippocampus
-
S100A6 (calcyclin), an EF-hand calcium binding protein, is considered to play various roles in the brain, for example, cell proliferation and differentiation, calcium homeostasis, and neuronal degeneration. In addition to some limbic nuclei, S100A6 is distributed in the rostral migratory stream, one of the major neurogenic niches of the adult brain. However, the potential involvement of S100A6 in adult neurogenesis remains unclear. ⋯ Cell fate-tracing experiment using BrdU showed that the majority of newly generated immature astrocytes were immunoreactive for S100A6, while mature astrocytes lacked S100A6 immunoreactivity. Administration of S100 protein inhibitor, trifluoperazine, caused a reduction in production of S100β+ astrocyte lineage cells, but had no impact on neurogenesis. Overall, our data provide the first evidence that S100A6 is a specific marker of neural stem cells and astrocyte precursors, and may be especially important for generation of astrocytes in the adult hippocampus.
-
The precise timing of pre-postsynaptic activity is vital for the induction of long-term potentiation (LTP) or depression (LTD) at many central synapses. We show in synapses of rat CA1 pyramidal neurons in vitro that spike timing dependent plasticity (STDP) protocols that induce LTP at glutamatergic synapses can evoke LTD of inhibitory postsynaptic currents or STDP-iLTD. ⋯ We determine that the downregulation of presynaptic Cyclic adenosine monophosphate/protein Kinase A pathways is essential for the induction of STDP-iLTD. These results suggest a novel mechanism by which the activation of cholinergic neurons and retrograde signaling by eCBs can modulate the efficacy of GABAergic synaptic transmission in ways that may contribute to information processing and storage in the hippocampus.
-
Hippocampal theta rhythm is believed to play a critical role in learning and memory. In animal models of temporal lobe epilepsy (TLE), there is evidence that alterations of hippocampal theta oscillations are involved in the cognitive impairments observed in this model. However, hippocampal theta frequency and amplitude at both the local field potential (LFP) and single unit level are strongly modulated by running speed, suggesting that the integration of locomotor information into memory processes may also be critical for hippocampal processing. ⋯ Our analyses reveal that speed/theta frequency correlation with performance cannot merely be explained by the direct influence of speed on behavior. Therefore, variations in the coordination of theta frequency with speed may participate in learning and memory processes. Impairments of this function could explain at least partially memory deficits in epilepsy.
-
Individuals with schizophrenia display a number of structural and cytoarchitectural alterations in the hippocampus, suggesting that other functions such as synaptic plasticity may also be modified. Altered hippocampal plasticity is likely to affect memory processing, and therefore any such pathology may contribute to the cognitive symptoms of schizophrenia, which includes prominent memory impairment. The current study tested whether prenatal exposure to infection, an environmental risk factor that has previously been associated with schizophrenia produced changes in hippocampal synaptic transmission or plasticity, using the maternal immune activation (MIA) animal model. ⋯ MIA animals displayed slower learning of a reversed platform location in the water maze, and a similarly slowed learning during reversal in a spatial plus maze task. Together these findings are indicative of reduced behavioral flexibility in response to changes in task requirements. The results are consistent with the hypothesis that hippocampal plasticity is altered in schizophrenia, and that this change in plasticity mechanisms may underlie some aspects of cognitive dysfunction in this disorder.
-
People experiencing early-life stress (ELS) exhibit increased incidence of behaviors that lead to addiction and obesity as adults. Many of these behaviors may be viewed as resulting from an overreliance on habits as opposed to goal-directed instrumental behavior. This increased habitization may result from alterations in the interactions between dorsolateral striatum-dependent and hippocampus-dependent learning systems. ⋯ In the high-ELS group, we observed a reduced sensitivity to reinforcement schedule even in the absence of the declarative memory challenge, consistent with Experiment 1. Our results suggest that ELS reduces the tendency to use declarative, hippocampus-dependent memory in instrumental tasks in favor of habits. ELS may affect hippocampal development, thus altering the interaction between memory systems and potentially contributing to poor health outcomes.