Cerebral cortex
-
Pioneer axons from the cingulate cortex initiate corpus callosum (CC) development, yet nothing is known about the molecules that regulate their guidance. We demonstrate that neuropilin 1 (Npn1) plays an integral role in the development of the CC. Npn1 is localized to axons of cingulate neurons as they cross the midline, and multiple class 3 semaphorins (Semas) are expressed around the developing CC, implicating these guidance molecules in the regulation of Npn1-expressing axons emanating from the cingulate cortex. ⋯ Analysis of mice deficient in the transcription factor Emx2 demonstrated that the cingulate cortex of these mice was significantly reduced in comparison to wild-type controls at E17 and that the CC was absent in rostral sections. Expression of Npn1 was absent in rostral sections of Emx2 mutants, suggesting that Npn1-expressing cingulate pioneers are required for CC formation. These data highlight a central role for Npn1 in the development of projections from the cingulate cortex and further illustrate the importance of these pioneer axons in the formation of the CC.
-
Comparative Study
Neuregulin-1 modulates hippocampal gamma oscillations: implications for schizophrenia.
Alterations in gamma-frequency oscillations are implicated in psychiatric disorders, and polymorphisms in NRG-1 and ERBB4, genes encoding Neuregulin-1 (NRG-1) and one of its receptors, designated ErbB4, are associated with schizophrenia. Here we show that NRG-1 selectively increases the power of kainate-induced, but not carbachol-induced, gamma oscillations in acute hippocampal slices. NRG-1beta is more effective than NRG-1alpha, a splice variant with lower affinity for ErbB receptors, and neither isoform affects the network activity without prior induction of gamma oscillations. ⋯ Moreover, we demonstrate that 50% of gamma-amino butyric acidergic parvalbumin (PV)-positive interneurons, which heavily contribute to the generation of gamma oscillations, express ErbB4 receptors. Importantly, both the number of PV-immunoreactive interneurons (-31%) and the power of kainate-induced gamma oscillations (-60%) are reduced in ErbB4 knockout mice. This study provides the first plausible link between NRG-1/ErbB4 signaling and rhythmic network activity that may be altered in persons with schizophrenia.
-
Resting-state functional connectivity magnetic resonance imaging (fcMRI) studies constitute a growing proportion of functional brain imaging publications. This approach detects temporal correlations in spontaneous blood oxygen level-dependent (BOLD) signal oscillations while subjects rest quietly in the scanner. Although distinct resting-state networks related to vision, language, executive processing, and other sensory and cognitive domains have been identified, considerable skepticism remains as to whether resting-state functional connectivity maps reflect neural connectivity or simply track BOLD signal correlations driven by nonneural artifact. ⋯ These 2 modalities were used to investigate connectivity within the default mode network, a set of brain regions--including medial prefrontal cortex (MPFC), medial temporal lobes (MTLs), and posterior cingulate cortex (PCC)/retropslenial cortex (RSC)--implicated in episodic memory processing. Using seed regions from the functional connectivity maps, the DTI analysis revealed robust structural connections between the MTLs and the retrosplenial cortex whereas tracts from the MPFC contacted the PCC (just rostral to the RSC). The results demonstrate that resting-state functional connectivity reflects structural connectivity and that combining modalities can enrich our understanding of these canonical brain networks.
-
A debilitating consequence of complete spinal cord injury (SCI) is the loss of motor control. Although the goal of most SCI treatments is to re-establish neural connections, a potential complication in restoring motor function is that SCI may result in anatomical and functional changes in brain areas controlling motor output. Some animal investigations show cell death in the primary motor cortex following SCI, but similar anatomical changes in humans are not yet established. ⋯ DTI analysis revealed structural abnormalities in the same areas with reduced gray matter volume and in the superior cerebellar cortex. In addition, tractography revealed structural abnormalities in the corticospinal and corticopontine tracts of the SCI subjects. In conclusion, human subjects with complete SCI show structural changes in cortical motor regions and descending motor tracts, and these brain anatomical changes may limit motor recovery following SCI.
-
Early coordinated network activity promotes the development of cortical structures. Although these early activity patterns have been recently characterized with respect to their developmental, spatial and dynamic properties, the cellular mechanisms by which specific neuronal populations trigger coordinated activity in the neonatal cerebral cortex are still poorly understood. Here we characterize the cellular and molecular processes leading to generation of network activity during early postnatal development. ⋯ Tonic activation by ambient nonsynaptically released gamma-amino butyric acid (GABA) facilitates the generation of up states in the neonatal cortex. Additionally, this network activity critically depends on neuronal gap junctions but not on glutamatergic or GABAergic synaptic transmission. Thus, an early circuit relying on the integrative function of the subplate as well as on cholinergic-driven tonic GABA depolarization and tight electrical coupling is able to generate coordinated network activity, which may shape the architecture and control the function of the developing cerebral cortex.