Cerebral cortex
-
Comparative Study Clinical Trial
Brain state-dependent functional hemispheric specialization in men but not in women.
Hemispheric specialization is reliably demonstrated in patients with unilateral lesions or disconnected hemispheres, but is inconsistent in healthy populations. The reason for this paradox is unclear. We propose that functional hemispheric specialization in healthy participants depends upon functional brain states at stimulus arrival (FBS). ⋯ Subsequent to all other brain states, there was an almost equal EWA after presentation to either visual field. Only about half of the FBS in men led to the pattern of functional hemispheric specialization. We suggest that 'split-brain' research may be marginally describable by a model, but only in exceptional situations, while in connected brains this functional hemispheric specialization is only one of many dynamic states.
-
Many anesthetics evoke electroencephalogram (EEG) burst suppression activity in humans and animals during anesthesia, and the mechanisms underlying this activity remain unclear. The present study used a rat neocortical brain slice EEG preparation to investigate excitatory synaptic mechanisms underlying anesthetic-induced burst suppression activity. Excitatory synaptic mechanisms associated with burst suppression activity were probed using glutamate receptor antagonists (CNQX and APV), GABA receptor antagonists, and simultaneous whole cell patch clamp and microelectrode EEG recordings. ⋯ Glutamate-mediated excitatory postsynaptic currents were significantly depressed by higher anesthetic concentrations that depressed burst suppression EEG activity. A GABA(A) agonist produced a similar EEG effect to the anesthetics. It appears that anesthetic effects at both glutamate and GABA synapses contribute to EEG patterns seen during anesthesia.
-
Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. ⋯ In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital cortex.
-
We have examined whether blood volume changes induced by neural activation are controlled precisely enough for us to visualize the submillimeter-scale functional structure in anesthetized and awake cat visual cortex. To activate the submillimeter-scale functional structures such as iso-orientation domains in the cortex, visual stimuli (gratings) were presented to the cats. Two methods were used to examine the spatial precision of blood volume changes including changes in total hemoglobin content and changes in plasma volume: (i) intrinsic signal imaging at the wavelength of hemoglobin's isosbestic point (569 nm) and (ii) imaging of absorption changes of an intravenously injected dye. ⋯ From the measurement of spatial separation of the iso-orientation domains, we estimated the spatial resolution of stimulus-specific blood volume changes to be as high as 0.6 mm. The changes in stimulus-nonspecific and -specific blood volume were not linearly correlated. These results suggest the existence of fine blood volume control mechanisms in the capillary bed in addition to global control mechanisms in arteries.
-
Clinical Trial Controlled Clinical Trial
ERP correlates of feedback and reward processing in the presence and absence of response choice.
The feedback negativity is a component of the event-related brain potential that is elicited by feedback stimuli associated with unfavorable outcomes. The present research investigated whether this component reflects an evaluation of the valence of experienced outcomes or a process of learning about actions that led to those outcomes. ⋯ However, the amplitude of the component was reduced in these tasks relative to a gambling task in which the outcomes appeared to be contingent upon participants' response choices. This reduction was correlated with changes in participants' subjective ratings of involvement in the tasks, suggesting that the evaluative process indexed by the feedback negativity is sensitive to the motivational significance of ongoing events.