Cerebral cortex
-
Electrophysiological studies have shown the enhanced response of anterior cingulate cortex (ACC) to colorectal distension in viscerally hypersensitive (VH) rats, which can be observed up to 7 weeks following colonic anaphylaxis, independent of colon inflammation, suggesting a mechanism for learning and triggering of pain memories in the ACC neuronal circuitry. Activity-dependent plasticity in synaptic strength may serve as a key mechanism that reflects cortical plasticity. However, only a few reports have indicated the synaptic plasticity of ACC in vivo. ⋯ Further, repeated tetanization of MT increased ACC neuronal activity and visceral pain responses of normal rats, mimicking VH rats. In conclusion, we demonstrated for the first time that visceral hypersensitivity is associated with alterations of synaptic plasticity in the ACC. The ACC synaptic strengthening in chronic visceral pain may engage signal transduction pathways that are in common with those activated by electrical stimulation, and serves as an attractive cellular model of functional visceral pain.
-
Randomized Controlled Trial
Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors.
Complex mental activity induces improvements in cognition, brain function, and structure in animals and young adults. It is not clear to what extent the aging brain is capable of such plasticity. This study expands previous evidence of generalized cognitive gains after mental training in healthy seniors. ⋯ Improvements in cognition were identified along with significant CBF correlates of the cognitive gains. We propose that cognitive training enhances resting-state neural activity and connectivity, increasing the blood supply to these regions via neurovascular coupling. These convergent results provide preliminary evidence that neural plasticity can be harnessed to mitigate brain losses with cognitive training in seniors.
-
There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right-handed subjects to test if this procedure could modulate M1 excitability and PPC-M1 connectivity. One hundred and eighty paired transcranial magnetic stimuli to the PPC and M1 at an interstimulus interval (ISI) of 8 ms were delivered at 0.2 Hz. ⋯ This interaction significantly attenuated at 60 min after left parietal ccPAS. Additional experiments showed that parietal ccPAS induced plasticity was timing-dependent, was absent if ISI was 100 ms, and could also be seen in the right hemisphere. Our results suggest that parietal ccPAS can modulate M1 excitability and PPC-M1 connectivity and is a new approach to modify motor excitability and sensorimotor interaction.
-
Traumatic brain injury (TBI) and its consequences represent one of the leading causes of death in young adults. This lesion mediates glial activation and the release of harmful molecules and causes brain edema, axonal injury, and functional impairment. Since glial activation plays a key role in the development of this damage, it seems that controlling it could be beneficial and could lead to neuroprotective effects. ⋯ We hypothesized that the ECS could be involved in the neuroprotective effects of minocycline. To address this hypothesis, we used a murine TBI model in combination with selective CB1 and CB2 receptor antagonists (AM251 and AM630, respectively). The results provided the first evidence for the involvement of ECS in the neuroprotective action of minocycline on brain edema, neurological impairment, diffuse axonal injury, and microglial activation, since all these effects were prevented by the CB1 and CB2 receptor antagonists.
-
Increased frontal cortex activation during cognitive task performance is common in aging but remains poorly understood. Here we explored patterns of age-related frontal brain activations under multiple task performance conditions and their relationship to white matter (WM) microstructure. Groups of younger (N = 28) and older (N = 33) participants completed a task-switching paradigm while functional magnetic resonance imaging (fMRI) was performed, and rested while diffusion tensor imaging was performed. ⋯ Within the older adult group, higher frontal activation was associated with poorer behavioral performance under all task conditions. In 2 regions in right frontal cortex, blood oxygen level-dependent (BOLD) magnitudes were negatively correlated with WM integrity in tracts connecting these structures with other task-relevant frontoparietal and striatal regions. Our results link age-related declines in the efficiency of frontal cortex functioning with lower WM integrity in aging.