Current opinion in neurobiology
-
Curr. Opin. Neurobiol. · Apr 2014
ReviewModeling the dynamical effects of anesthesia on brain circuits.
General anesthesia is a neurophysiological state that consists of unconsciousness, amnesia, analgesia, and immobility along with maintenance of physiological stability. General anesthesia has been used in the United States for more than 167 years. Now, using systems neuroscience paradigms how anesthetics act in the brain and central nervous system to create the states of general anesthesia is being understood. ⋯ We review recent model descriptions of the commonly observed EEG patterns associated with propofol: paradoxical excitation, strong frontal alpha oscillations, anteriorization and burst suppression. Our analysis suggests that propofol's actions at GABAergic networks in the cortex, thalamus and brainstem induce profound brain dynamics that are one of the likely mechanisms through which this anesthetic induces altered arousal states from sedation to unconsciousness. Because these dynamical effects are readily observed in the EEG, the mathematical descriptions of how propofol's EEG signatures relate to its mechanisms of action in neural circuits provide anesthesiologists with a neurophysiologically based approach to monitoring the brain states of patients receiving anesthesia care.
-
Curr. Opin. Neurobiol. · Dec 2013
ReviewIntrinsic and extrinsic control of oligodendrocyte development.
Oligodendrocytes (OLs) are the myelinating glia of the central nervous system. Myelin is essential for the rapid propagation of action potentials as well as for metabolic support of axons, and its loss in demyelinating diseases like multiple sclerosis has profound pathological consequences. ⋯ Here we discuss recent advances in understanding how these steps of OL development are controlled intrinsically by transcription factors and chromatin remodeling and extrinsically by signaling molecules and neuronal activity. We also discuss how knowledge of these pathways is now allowing us to take steps toward generating patient-specific OPCs for disease modeling and myelin repair.
-
Optogenetic tools have revolutionized the field of neuroscience, and brought the study of neural circuits to a higher level. Optogenetics has significantly improved our understanding not only of the neuronal connections and function of the healthy brain, but also of the neuronal changes that lead to psychiatric disorders. In this review, we summarize recent optogenetic studies that explored different brain circuits involved in natural behaviors, such as sleep and arousal, reward, fear, and social and aggressive behavior. In addition, we describe how alterations in these circuits may lead to psychiatric disorders such as addiction, anxiety, depression, or schizophrenia.
-
Curr. Opin. Neurobiol. · Feb 2013
ReviewOptogenetics in a transparent animal: circuit function in the larval zebrafish.
Optogenetic tools can be used to manipulate neuronal activity in a reversible and specific manner. In recent years, such methods have been applied to uncover causal relationships between activity in specified neuronal circuits and behavior in the larval zebrafish. In this small, transparent, genetic model organism, noninvasive manipulation and monitoring of neuronal activity with light is possible throughout the nervous system. Here we review recent work in which these new tools have been applied to zebrafish, and discuss some of the existing challenges of these approaches.