Current opinion in neurobiology
-
Glial cells, which include myelinating oligodendrocytes, Schwann cells and astrocytes, fulfil a large variety of functions that are critical for the development, functioning and regeneration of neurons. Some of these glial functions have been shown to require polarization of the intracellular machinery. Although the initial signals leading to glial cell polarization during development and in the adult are not completely elucidated, crucial molecules such as proteins of the extracellular matrix and their membrane receptors have been identified. A general picture of the intracellular signalling pathways controlling polarity in glial cells is also emerging and shows that highly conserved and ubiquitously expressed polarity proteins are involved.
-
Olfaction consists of a set of transforms from a physical space of odorant molecules, through a neural space of information processing, and into a perceptual space of smell. Elucidating the rules governing these transforms depends on establishing valid metrics for each of the three spaces. Here we first briefly review the perceptual and neural spaces, and then concentrate on the physical space of odorant molecules. We argue that the lack of an agreed-upon odor metric poses a significant obstacle toward understanding the neurobiology of olfaction, and suggest two alternative odor metrics as possible solutions.
-
Curr. Opin. Neurobiol. · Aug 2008
ReviewSensory neuron voltage-gated sodium channels as analgesic drug targets.
Voltage-gated sodium channels are crucial determinants of neuronal excitability and signalling; some specific channel subtypes have been implicated in a number of chronic pain conditions. Human genetic studies show gain-of-function or loss-of-function mutations in Na(V)1.7 lead to an enhancement or lack of pain, respectively, whilst transgenic mouse and knockdown studies have implicated Na(V)1.3, Na(V)1.8 and Na(V)1.9 in peripheral pain pathways. ⋯ Recent advances exploiting both natural products and small molecule selective channel blockers have demonstrated that this approach to pain control is feasible. These observations provide a rationale for the development of new analgesics without the side effect profile of broad spectrum sodium channel blockers.
-
Curr. Opin. Neurobiol. · Apr 2008
ReviewThe role of fMRI in cognitive neuroscience: where do we stand?
Functional magnetic resonance imaging (fMRI) has quickly become the most prominent tool in cognitive neuroscience. In this article, I outline some of the limits on the kinds of inferences that can be supported by fMRI, focusing particularly on reverse inference, in which the engagement of specific mental processes is inferred from patterns of brain activation. Although this form of inference is weak, newly developed methods from the field of machine learning offer the potential to formalize and strengthen reverse inferences. I conclude by discussing the increasing presence of fMRI results in the popular media and the ethical implications of the increasing predictive power of fMRI.
-
Curr. Opin. Neurobiol. · Apr 2008
ReviewAnchors, scales and the relative coding of value in the brain.
People are alarmingly susceptible to manipulations that change both their expectations and experience of the value of goods. Recent studies in behavioral economics suggest such variability reflects more than mere caprice. People commonly judge options and prices in relative terms, rather than absolutely, and display strong sensitivity to exemplar and price anchors. ⋯ In particular, relative valuation may be a natural consequence of adaptive coding of neuronal firing to optimise sensitivity across large ranges of value. Furthermore, the initial apparent arbitrariness of value may reflect the brains' attempts to optimally integrate diverse sources of value-relevant information in the face of perceived uncertainty. Recent findings in neuroscience support both accounts, and implicate regions in the orbitofrontal cortex, striatum, and ventromedial prefrontal cortex in the construction of value.