Current opinion in neurobiology
-
Brain-machine interfaces are being developed to assist paralyzed patients by enabling them to operate machines with recordings of their own neural activity. Recent studies show that motor parameters, such as hand trajectory, and cognitive parameters, such as the goal and predicted value of an action, can be decoded from the recorded activity to provide control signals. ⋯ Although most studies have recorded electroencephalograms or spike activity, recent research shows that local field potentials (LFPs) offer a promising additional signal. The decode performances of LFPs and spike signals are comparable and, because LFP recordings are more long lasting, they might help to increase the lifetime of the prosthetics.
-
Curr. Opin. Neurobiol. · Dec 2004
ReviewSignal acquisition and analysis for cortical control of neuroprosthetics.
Work in cortically controlled neuroprosthetic systems has concentrated on decoding natural behaviors from neural activity, with the idea that if the behavior could be fully decoded it could be duplicated using an artificial system. Initial estimates from this approach suggested that a high-fidelity signal comprised of many hundreds of neurons would be required to control a neuroprosthetic system successfully. ⋯ These artificial systems need not resemble or behave similarly to any natural biological system. Effective matching of discrete and continuous neural command signals to appropriately configured device functions will enable effective control of both natural and abstract artificial systems using compatible thought processes.
-
Episodic memory is defined as the recollection of specific events in one's past, accompanied by the experience of having been there personally. This definition presents high hurdles to the investigation of episodic memory in nonhumans. Recent studies operationalize episodic memory as memory for when and where an event occurred, for the order in which events occurred, or for an animal's own behavior. ⋯ Nonetheless, the study of episodic memory in nonhumans seems less daunting than it did five years ago. To demonstrate a correspondence between human episodic memory and nonhuman memory, progress is needed in three areas. Putative episodic memories in nonhumans should be shown to be; first, represented in long-term memory, rather than short-term or working memory; second, explicit, or accessible to introspection; and third, distinct from semantic memory, or general knowledge about the world.
-
Nogo-A is one of several neurite growth inhibitory components present in oligodendrocytes and CNS myelin membranes. Nogo has a crucial role in restricting axonal regeneration and compensatory fibre growth in the injured adult mammalian CNS. Recent studies have shown that in vivo applications of Nogo neutralizing antibodies, peptides blocking the Nogo receptor subunit NgR, or blockers of the postreceptor components Rho-A and ROCK induce long-distance axonal regeneration and compensatory sprouting, accompanied by an impressive enhancement of functional recovery, in the rat and mouse spinal cord.
-
Deep brain stimulation at high frequency was first used in 1997 to replace thalamotomy in treating the characteristic tremor of Parkinson's disease, and has subsequently been applied to the pallidum and the subthalamic nucleus. The subthalamic nucleus is a key node in the functional control of motor activity in the basal ganglia. Its inhibition suppresses symptoms in animal models of Parkinson's disease, and high frequency chronic stimulation does the same in human patients. ⋯ The mechanism of action may involve a functional disruption of the abnormal neural messages associated with the disease. Long-term changes, neural plasticity and neural protection might be induced in the network. Similar effects of stimulation and lesioning have led to the extension of this technique for other targets and diseases.