Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Comparative Study
Topiramate and cortical excitability in humans: a study with repetitive transcranial magnetic stimulation.
Repetitive transcranial magnetic stimulation (rTMS) delivered at 5 Hz frequency and suprathreshold intensity progressively increases the size of muscle evoked potentials (MEPs) and the duration of the cortical silent period (CSP) in normal subjects. The aim of this study was to evaluate the effects of topiramate (TPM) at different doses on cortical excitability variables tested with rTMS. We tested the facilitation of the MEP size and CSP duration evoked by focal rTMS in eight patients before and after treatment with TPM at different doses for chronic neuropathic pain. ⋯ Our results suggest that TPM modulates the excitatory intracortical interneurons probably by altering rTMS-induced synaptic potentiation. These drug-induced effects are related to TPM doses and plasma concentrations. In conclusion, rTMS may be useful for quantifying the effectiveness of antiepileptic drugs and for assessing individual responses to different drugs but acting through similar mechanisms, thus combining functional neurophysiological information and laboratory data.
-
Traumatic spinal cord injury (SCI) results not only in motor impairment, but also in chronic central neuropathic pain, which often is refractory to conventional treatment approaches. Upregulated expression of sodium channel Nav1.3 has been observed within the spinal dorsal horn neurons after SCI, and appears to contribute to neuronal hyperresponsiveness and pain-related behaviors. In this study we characterized the changes in sodium current properties within dorsal horn neurons after contusive SCI. ⋯ Small slow depolarizations below action potential threshold produced ramp currents, which were markedly enhanced by SCI (from 182 +/- 41 to 338 +/- 55 pA). The density of the noninactivating persistent sodium current was also significantly enhanced in neurons from SCI animals (from 17.4 +/- 3.2 to 27.7 +/- 4.4 pA/pF at 50-70 ms of depolarization). The increased persistent sodium current and ramp current, which are consistent with upregulation of Nav1.3 within dorsal horn neurons, suggest a basis for the hyperresponsiveness of these neurons following SCI.