Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Three components of postural control associated with pushing in symmetrical and asymmetrical stance.
A number of occupational and leisure activities that involve pushing are performed in symmetrical or asymmetrical stance. The goal of this study was to investigate early postural adjustments (EPAs), anticipatory postural adjustments (APAs), and compensatory postural adjustments (CPAs) during pushing performed while standing. Ten healthy volunteers stood in symmetrical stance (with feet parallel) or in asymmetrical stance (staggered stance with one foot forward) and were instructed to use both hands to push forward the handle of a pendulum attached to the ceiling. ⋯ The study outcome confirmed the existence of the three components of postural control (EPAs, APAs, and CPAs) in pushing. Moreover, standing asymmetrically was associated with asymmetrical patterns of EMG activity in the lower extremities reflecting the stance-related postural control during pushing. The study outcome provides a basis for studying postural control during other daily activities involving pushing.
-
Operant escape from nociceptive thermal stimulation of 13 Long-Evans rats was compared before and after lateral spinal hemisection, to determine whether this lesion configuration provides an appropriate preclinical model of the hyperalgesia that can be associated with human spinal cord injury. Escape from 44 °C and from 47 °C stimulation was not affected following sham spinal surgery but was significantly reduced over 20 weeks of postoperative testing following lateral spinal hemisection. ⋯ In addition, the latency of reflexive lick/guard responses to 44 °C was increased and the duration of lick/guard responding was decreased in the present study (hyporeflexia). Thus, previous assessments of simple withdrawal reflexes have described a hyperreflexia following lateral spinal hemisection that was not replicated by lick/guard testing, and postoperative escape responding revealed hypoalgesia rather than the increased pain sensitivity expected in a model of chronic pain.
-
We recently demonstrated the emergence of touch-evoked pain (allodynia) during innocuous tactile stimulation of the skin overlying a painful muscle. This effect appeared to depend on a class of low-threshold unmyelinated mechanoafferents, termed C-tactile fibres (CT). In this study, we investigated the peripheral neurocircuitry of allodynia when pain originates in the skin. ⋯ Conversely, the blockade of unmyelinated cutaneous fibres abolished the allodynia (while the myelinated fibres were conducting or not). On the basis of these findings, in addition to our earlier work, we conclude that the allodynic effect of CT-fibre activation is not limited to nociceptive input arising from the muscle, but can be equally realized when pain originates in the skin. These results denote a broader role of CTs in pain modulation.
-
We investigated how the influence of natural exploratory gaze behaviour on postural control develops from childhood into adulthood. In a cross-sectional design, we compared four age groups: 6-, 9-, 12-year-olds and young adults. Two experimental trials were performed: quiet stance with a fixed gaze (fixed) and quiet stance with natural exploratory gaze behaviour (exploratory). ⋯ The regularity of COP displacements did not show a clear developmental trend, which indicates that COP dynamics were qualitatively similar across age groups. Together, the results suggest that the contribution of head movement to eye-head saccades decreases with age and that head instability-in part resulting from such gaze-related head movements-is an important limiting factor in children's postural control. The lack of head stabilisation might particularly affect children in everyday activities in which both postural control and visual exploration are required.
-
The ability of human sensory systems to integrate information across the different modalities provides a wide range of behavioral and perceptual benefits. This integration process is dependent upon the temporal relationship of the different sensory signals, with stimuli occurring close together in time typically resulting in the largest behavior changes. The range of temporal intervals over which such benefits are seen is typically referred to as the temporal binding window (TBW). ⋯ In the current study, we attempt to elucidate the role that these various factors play in the measurement of this important construct. The results show a strong effect of stimulus type, with the TBW assessed with speech stimuli being both larger and more symmetrical than that seen using simple and complex non-speech stimuli. These effects are robust across task and statistical criteria and are highly consistent within individuals, suggesting substantial overlap in the neural and cognitive operations that govern multisensory temporal processes.