Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Cognitive functions especially learning and memory are severely affected by high altitude (HA) exposure. Hypobaric hypoxia (HBH) encountered at HA is known to cause oxidative stress, alterations of neurotransmitters and cognitive impairment. We hypothesized that alteration in cholinergic system may be involved in HBH-induced learning impairment. ⋯ Administration of AChEIs like physostigmine (PHY) and galantamine (GAL) resulted in amelioration of the deleterious effects induced by HBH. The AChEIs were also able to restore the neuronal morphology. Our data suggest that cholinergic system is affected by HBH, and AChEIs were able to improve HBH-induced learning impairment in rats.
-
Skillful manipulation of objects often requires the spatio-temporal coordination of both hands and, at the same time, the compensation of environmental forces. In bimanual coordination, movements of the two hands may be coupled because each hand needs to compensate the forces generated by the other hand or by an object operated by both hands (dynamic coupling), or because the two hands share the same workspace (spatial coupling). We examined how spatial coupling influences bimanual coordination, by looking at the adaptation of velocity-dependent force fields during a task in which the two hands simultaneously perform center-out reaching movements with the same initial position and the same targets, equally spaced on a circle. ⋯ We show that these effects are due to a gradual sideways shift of the hands, so that during movements the left hand tends to consistently remain at the left of the right hand. These findings can be interpreted in terms of a neural mechanism of bimanual coordination/interaction, triggered by the force field adaptation process but largely independent from it, which opposes movements that may lead to the crossing of the hands. In conclusion, our results reveal a concurrent interplay of two task-dependent modules of motor-cognitive processing: an adaptive control module and a 'protective' module that opposes potentially 'dangerous' (or cognitively costly) bimanual interactions.
-
Stabilising shifts of the centre of mass (COM) are observed during balance recovery when subjects simultaneously execute voluntary unilateral knee flexion or unilateral arm raising. Here, we examined whether voluntary lateral trunk bending provided more beneficial stabilising effects, and how motor programs of balance corrections are combined with those of the focal voluntary action. The upright balance of 24 healthy young subjects (19-33 years of age) was perturbed using multi-directional rotations of the support-surface. ⋯ Prominent secondary balance correcting responses, having a similar timing as voluntary responses observed under TO conditions, were seen under CONT only in trunk muscles. These, and later stabilising, responses had amplitudes as expected from PO + TO conditions being significantly greater than PO responses. The ability with which different muscle synergies for balance corrections and voluntary trunk bending were integrated into one indicates a flexible adjustment of the CNS programs to the demands of both tasks.
-
Tinnitus is considered as an auditory phantom percept. Preliminary evidence indicates that transcranial direct current stimulation (tDCS) of the temporo-parietal area might reduce tinnitus. tDCS studies of the prefrontal cortex have been successful in reducing depression, impulsiveness and pain. Recently, it was shown that the prefrontal cortex is important for the integration of sensory and emotional aspects of tinnitus. ⋯ In addition, the amount of suppression for tinnitus-related distress is moderated by an interaction between tinnitus type and tinnitus laterality. This was, however, not the case for tinnitus intensity. Our study supports the involvement of the prefrontal cortex in the pathophysiology of tinnitus.
-
Our aim was to describe the differences in the presence of trigger points (TrPs) in the shoulder muscles and to investigate the presence of mechanical hypersensitivity in patients with unilateral shoulder impingement and healthy controls. Twelve patients with strictly unilateral shoulder impingement and 10 matched controls were recruited. TrPs in the levator scapula, supraspinatus, infraspinatus, subscapularis, pectoralis major, and biceps brachii muscles were explored. ⋯ Significant negative correlations between pain intensity and PPT levels were found. Patients with shoulder impingement showed widespread pressure hypersensitivity and active TrPs in the shoulder muscles, which reproduce their clinical pain symptoms. Our results suggest both peripheral and central sensitisation mechanisms in patients with shoulder impingement syndrome.