Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Randomized Controlled Trial
Immediate changes in feedforward postural adjustments following voluntary motor training.
There is limited evidence that preprogrammed feedforward adjustments, which are modified in people with neurological and musculoskeletal conditions, can be trained and whether this depends on the type of training. As previous findings demonstrate consistent delays in feedforward activation of the deep abdominal muscle, transversus abdominis (TrA), in people with recurrent low back pain (LBP), we investigated whether training involving voluntary muscle activation can change feedforward mechanisms, and whether this depends on the manner in which the muscle is trained. Twenty-two volunteers with recurrent LBP were randomly assigned to undertake either training of isolated voluntary activation of TrA or sit-up training to activate TrA in a non-isolated manner to identical amplitude. ⋯ The magnitude of change in TrA EMG onset was correlated with the quality of isolated training. In contrast, all of the abdominal muscles were recruited earlier during arm flexion after sit-up training, while onset of TrA EMG was further delayed during arm extension. The results provide evidence that training of isolated muscle activation leads to changes in feedforward postural strategies, and the magnitude of the effect is dependent on the type and quality of motor training.
-
Several paired-associative stimulation (PAS) protocols induce neuroplastic changes in human motor cortex (M1). To understand better the inherent variability of responses to PAS, we investigated the effectiveness and reproducibility of two PAS paradigms, and neurophysiological and experimental variables that may influence this. Motor evoked potentials (MEPs) were elicited by transcranial magnetic stimulation (TMS) of right M1, and recorded from surface EMG of left abductor pollicis brevis (APB) and first dorsal interosseous before and after PAS. ⋯ Both PAS protocols induced more APB MEP facilitation, and greater reproducibility between sessions, in experiments conducted in the afternoon. The mechanism for this is unclear, but circadian rhythms in hormones and neuromodulators known to influence neuroplasticity warrant investigation. Future studies involving PAS should be conducted at a fixed time of day, preferably in the afternoon, to maximise neuroplasticity and reduce variability.
-
To determine the potential differences in control underlying compensatory and voluntary reach-to-grasp movements the current study compared the kinematic and electromyographic profiles associated with upper limb movement. Postural perturbations were delivered to evoke compensatory reach-to-grasp in ten healthy young adult volunteers while seated on a chair that tilted as an inverted pendulum in the frontal plane. Participants reached to grasp a laterally positioned stable handhold and pulled (or pushed) to return the chair to vertical. ⋯ To achieve such target specific control for responses initiated within 100 ms of the perturbation, and when characteristics of body movement were unpredictable, the perturbation-evoked movements would need to incorporate sensory cues associated with body movement relative to the target into the earliest aspects of the movement. This suggests reliance on an internal spatial map constructed prior to the onset of perturbation. Parallels in electromyographic and kinematic profiles between compensatory and voluntary reach-to-grasp movements, in spite of temporal differences, lead to the view they are controlled by common neural mechanisms.
-
Reaching to grasp an object of interest requires a complex sensorimotor transformation-involving eye, head, hand, and postural systems. We show here that discontinuities in development of movement in these systems are dependent not only on age but also vary according to task constraints. Providing external postural support allows us to examine the differential influences of the eye on the hand and the hand on the eye as the ability to isolate and coordinate each system changes with age. ⋯ Postural support had differential effects on the processes of initiation and execution of eye-hand movements. The addition of postural support decreased the time needed for planning the movement, especially in the youngest children, and contributed to increased speed of isolated movements, whereas it caused differential slowing of coordinated movements depending on the child's developmental level. We suggest that the complexity of the results reflects the complexity of changing task requirements as children transition from simpler ballistic control of all systems to flexible, independent but coordinated control of multiple systems.
-
We investigated the speed-accuracy trade-off in a task of pointing with the big toe of the right foot by a standing person that was designed to accentuate the importance of postural adjustments. This was done to test two hypotheses: (1) movement time during foot pointing will scale linearly with ID during target width changes, but the scaling will differ across movement distances; and (2) variations in movement time will be reflected in postural preparations to foot motion. Ten healthy adults stood on the force plate and were instructed to point with the big toe of the right foot at a target (with widths varying from 2 to 10 cm) placed on the floor in front of the subject at a distance varying from 10 to 100 cm. ⋯ We conclude that the speed-accuracy trade-off in a task with postural adjustments originates at the level of movement planning. The different dependences of movement time on D and W may be related to spontaneous postural sway (migration of the point of application of the resultant force acting on the body of the standing person). The results may have practical implications for posture and gait rehabilitation techniques that use modifications of stepping accuracy.