Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Many studies show consistently that repetitive transcranial magnetic stimulation (rTMS) with a frequency of 1 Hz and an intensity above the resting motor threshold (RMT) performed for several minutes over the primary motor cortex (M1) leads to a depression of cortical excitability. Furthermore, most studies concur on a facilitation of the non-stimulated contralateral M1. Little is known, however, about the physiological mechanisms underlying these effects. ⋯ In conclusion, the MEP increase in the non-stimulated M1 lasted longer than the MEP decrease in the stimulated M1. Only the long-lasting MEP increase was associated with a specific change in intracortical excitability (increase in SICF). Modulation of motor cortical inhibition did not play a role in explaining the rTMS induced changes in MEP amplitude.
-
The purpose of this study was to investigate short-term effects of walking with functional electrical stimulation (FES) on inhibitory and excitatory spinal reflexes in healthy subjects. The FES was applied to the common peroneal (CP) nerve during the swing phase of the step cycle when the ankle flexors are active. We have previously shown that corticospinal excitability for the tibialis anterior (TA) muscle increased after 30 min of FES-assisted walking. ⋯ Thirty minutes of FES did not produce any significant effects on spinal inhibitory pathways examined in the present study. In conclusion, the soleus H-reflex showed a small but consistent decrease and no spinal circuits examined showed an increase, as was observed in the corticospinal excitability. Thus, we suggest that a short-term application of FES increases the excitability of the cortex or its connections to the spinal cord more effectively than that of spinal pathways.
-
We examined the interaction between the control of posture and an aiming movement. Balance control was varied by having subjects aim at a target from a seated or a standing position. The aiming difficulty was varied using a Fitts'-like paradigm (movement amplitude=30 cm; target widths=0.5, 1.0, 2.5 and 5 cm). ⋯ When seated, the CP kinematics was scaled with the hand movement kinematics. Increasing the index of difficulty led to a strong correlation between the hand speed and CP displacement and speed. The complex organization between posture and movement was revealed only by examining the specific interactions between speed-accuracy and postural constraints.
-
Temporal summation of muscle pain is an important factor in musculoskeletal pain as central integration of repetitive nociceptive input can be facilitated in musculoskeletal pain patients. The aim of this study is to evaluate changes in temporal summation of pressure pain after induction of delayed onset muscle soreness (DOMS) of the trapezius muscle. Sixteen healthy volunteers participated in the study. ⋯ Facilitation of temporal summation for 1 s ISI indicated that DOMS may increase the central excitability besides involving peripheral sensitisation. During DOMS there was no potential for further nociceptor sensitisation by repeated noxious pressure stimuli, which may account for the diminishment of temporal summation evoked by pressure stimuli with ISI 5, 10, and 30 s. These data indicate that muscle soreness might facilitate the central components of temporal summation to mechanical stimulation.
-
Balance control is influenced by the availability and integrity of sensory inputs as well as the ability of the balance control mechanisms to tailor the corrective action to the gravitational torque. In this study, to challenge balance control, visual and ankle proprioceptive information were perturbed (eyes closed and/or tendon vibration). We masked sensory inputs in order: (1) to test the hypothesis that adolescent idiopathic scoliosis (AIS), compared to healthy adolescent, relies more on ankle proprioception and/or visual inputs to regulate balance and (2) to determine whether it is the variation or the amplitude of the balance control commands of AIS that leads to greater body sway oscillations during sensory deprivation. ⋯ This was observed regardless of whether vision was available or not. The analysis of the sway density curves revealed that the amplitude rather than the variation of the balance control commands was related to a larger CP range and greater RMS CP velocity for AIS. The present results suggest that AIS, compared to control participants, relies much more on ankle proprioception to control the amplitude of the balance control commands.