Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Temporal summation of muscle pain is an important factor in musculoskeletal pain as central integration of repetitive nociceptive input can be facilitated in musculoskeletal pain patients. The aim of this study is to evaluate changes in temporal summation of pressure pain after induction of delayed onset muscle soreness (DOMS) of the trapezius muscle. Sixteen healthy volunteers participated in the study. ⋯ Facilitation of temporal summation for 1 s ISI indicated that DOMS may increase the central excitability besides involving peripheral sensitisation. During DOMS there was no potential for further nociceptor sensitisation by repeated noxious pressure stimuli, which may account for the diminishment of temporal summation evoked by pressure stimuli with ISI 5, 10, and 30 s. These data indicate that muscle soreness might facilitate the central components of temporal summation to mechanical stimulation.
-
We examined the interaction between the control of posture and an aiming movement. Balance control was varied by having subjects aim at a target from a seated or a standing position. The aiming difficulty was varied using a Fitts'-like paradigm (movement amplitude=30 cm; target widths=0.5, 1.0, 2.5 and 5 cm). ⋯ When seated, the CP kinematics was scaled with the hand movement kinematics. Increasing the index of difficulty led to a strong correlation between the hand speed and CP displacement and speed. The complex organization between posture and movement was revealed only by examining the specific interactions between speed-accuracy and postural constraints.
-
Noxious low-frequency stimulation (LFS) of presynaptic nerve fibers induces long-term depression (LTD) of synaptic transmission. In vitro studies suggest a sole homosynaptic effect. Consequently, the present study addressed the hypothesis that LTD of craniofacial nociception in man is mediated by a homosynaptic mechanism. ⋯ Pain perception decreased after ipsilateral LFS but not after contralateral LFS. The bilateral effect of noxious LFS on the BR provides evidence for heterosynaptic LTD based on bilateral projections of supraorbital nerve afferents onto spinal trigeminal nuclei. The divergent effect on pain perception may be due to a preferential contralateral projection of nociceptive afferents onto reflex interneurons but not onto trigeminothalamic projection neurons.
-
The central processes occurring during fatiguing exercise are not well understood, however transcranial magnetic stimulation (TMS) studies have reported increases both in corticomotor excitability, as measured by the motor-evoked potential (MEP) amplitude, and in long-interval intracortical inhibition, as measured by the duration of the post-MEP silent period. To determine whether short-interval cortical inhibition (SICI) is modulated by fatiguing exercise, we used single and paired-pulse TMS to measure MEP amplitude and SICI for the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles of the hand during, and for 20 min after, a 10-min intermittent maximal voluntary abduction of the index finger designed to fatigue the FDI muscle. For the FDI, the index of SICI increased at the onset of exercise (from 0.25+/-0.05 to 0.55+/-0.11, P < 0.05) and then decreased progressively as force declined. ⋯ MEP amplitude for both the FDI and ADM increased above baseline during exercise and then decreased below baseline during the recovery period. These results demonstrate that there are significant changes in SICI during and after a fatiguing exercise protocol that are isolated to the representation of the fatigued muscle. The inter-relationship between the changes in excitation and inhibition suggests the presence of a measured and adaptive process of modulation in central excitation and inhibition acting to increase corticomotor drive to the exercising muscle as fatigue is developing.
-
The aim of this study was to investigate whether synaptic plasticity and metaplasticity in slice cultures of the young rat hippocampus were comparable to previously reported synaptic plasticity and metaplasticity in acute adult hippocampal slices. This is relevant since differences do exist between the preparations as a result of age and the ex vivo maintenance. We prepared and maintained slice cultures from 5- to 6-day-old rats according to the porous membrane method. ⋯ Priming activation of group 1 metabotropic glutamate receptors (mGluRs) with DHPG facilitated subsequent LTP, revealing a metaplastic effect similar to that observed in acute slices. Immunohistochemistry for group 1 mGluR subtypes mGluR1alpha and mGluR5 showed both receptors to be present in these cultures. We conclude that synaptic plasticity and mGluR-mediated metaplasticity are largely comparable to those effects found in acute in vitro techniques.