Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Comparative Study
Vasomotor response to cold stimulation in human capsaicin-induced hyperalgesic area.
Cooling the skin induces sympathetically driven vasoconstriction, with some vasoparalytic dilatation at the lowest temperatures. Neurogenic inflammation, on the other hand, entails vasodilatation. In this study we investigated the balance between vasoconstriction and vasodilatation in an area of experimentally induced secondary hyperalgesia (2 degrees HA), in response to low-temperature stimulations. ⋯ In addition, vasodilatory effect (elevated BF) was found following the capsaicin injection compared with baseline for all regions (P<0.001): the non-cooled area was dilated by 450+/-5.1%; The vasoconstrictive effect for the 10 and 20 degrees C did not overcome the capsaicin vasodilatation, but did reduce it, with dilatation of 364+/-7.0% and 329+/-7.3%, respectively. For 0 degrees C, a dilatation of 407+/-6.5% was seen. It is concluded that in this experimental model, and potentially in the equivalent clinical syndromes, vasodilatation induced by the inflammation is only slightly reduced by cold stimulation such that it is still dominant, despite some cold-induced vasoconstriction.
-
In the present report, we extend our previous observations on the effect of age on postural stabilization from fingertip contact (Exp Brain Res 157 (2004) 275) to examine the possible influence of sensory thresholds measured at the fingertip on the magnitude of contact forces. Participants (young, n=25, 19-32 years; old, n=35, 60-86 years) underwent psychophysical testing of the right index finger to determine thresholds for spatial acuity, pressure sensitivity and kinesthetic acuity. Spatial acuity was determined from the ability to detect gaps of different widths, while Semmes-Weinstein monofilaments were used for pressure sensitivity. ⋯ The same analyses further revealed that much of the variance explained by the models arose from inter-individual differences in tactile spatial acuity and not from differences in pressure sensitivity or in kinesthetic acuity. Thus, of all three tests, the spatial acuity task was the most sensitive at detecting differences in hand sensibility both within and between age groups and, accordingly, was also better at predicting the magnitude of fingertip forces deployed for postural stabilization. Since spatial acuity is critically dependent upon innervation density, we conclude that the degree of functional innervation at the fingertip was likely an important factor in determining the capacity of older participants to use contact cues for stability purposes, forcing the most affected individuals to exert unusually high pressures in order to achieve stabilization in the presence of reduced tactile inputs arising from contact with the touched surface.
-
This study employed neurophysiological methods to relate the condition of the corticospinal system with the voluntary control of lower-limb muscles in persons with motor-incomplete spinal cord injury. It consisted of two phases. In a group of ten healthy subjects, single and paired transcranial magnetic stimulation (TMS) of the motor cortex was used to study the behavior of the resulting motor evoked potentials (MEP) in lower-limb muscles. ⋯ American Spinal Injury Association Impairment Scale component motor scores for agonist muscles, Quadriceps, Tibialis Anterior, and Triceps Surae, were significantly lower where MEPs could not be obtained (p < 0.05). VRI values were also significantly lower for motor tasks with agonists that had no resting MEP (p < 0.01). Therefore, the presence of a demonstrable connection between the motor cortex and spinal motor neurons in persons with SCI was related to the quality of post-injury voluntary motor control as assessed by the VRI.
-
Primary motor cortex (M1) excitability is modulated by both ipsilateral limb movement and passive observation of movement of the contralateral limb. An interaction of these effects within M1 may account for recent research suggesting improved functional recovery of the impaired arm following stroke by viewing a mirror reflection of movements of the unimpaired arm superimposed over the (unseen) impaired arm. This hypothesis was tested in the present study using single-pulse transcranial magnetic stimulation (TMS) in eight neurologically healthy subjects. ⋯ There was no difference between the dominant and non-dominant hand. Excitability of M1 ipsilateral to a unilateral hand movement is facilitated by viewing a mirror reflection of the moving hand. This finding provides neurophysiological evidence supporting the application of mirror therapy in stroke rehabilitation.
-
The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). ⋯ No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity.