Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Resting tremor is seen in both the limbs and in the trigeminal motor system. These rhythmical perturbations are the result of alternating activation of antagonistic muscles, and these increase in amplitude during slow, voluntary movements. In the present study, we examined the effect of experimental muscle pain on finger and jaw tremor. ⋯ No change in the peak tremor frequency was seen in either the finger or the jaw during pain. The most likely explanation for these data is that muscle pain tonically modulates the amplitude of the outputs from the central "pulsatile control" generators that drive the alternating activation of antagonistic muscles which produce tremor at rest and during movements. This modulation is in the opposite direction for systems controlling jaw and hand, suggesting a specific interaction of the nociceptive afferents with separate central oscillators.
-
The present study aimed to elucidate sPLA(2) activity in the normal and kainate-lesioned hippocampus using selective inhibitors of sPLA(2). In normal rats the highest levels of sPLA(2) were observed in the hippocampus, pons, and medulla, followed by the cerebral neocortex and caudate nucleus. After intracerebroventricular kainate injections an increase in total PLA(2) activity was observed in the rat hippocampus. ⋯ These results show that there is a high level of sPLA(2) activity in the normal hippocampus, pons, and medulla oblongata, and that the level increases further in the hippocampus after kainate-induced excitotoxic injury. The increased PLA(2) activity was inhibited by P-NT. II, indicating a potential use of this peptide as a PLA(2) inhibitory agent in the brain.
-
Comparative Study
Serotonin receptors 5-HT1A and 5-HT3 reduce hyperexcitability of dorsal horn neurons after chronic spinal cord hemisection injury in rat.
Spinal cord injury (SCI) results in abnormal pain syndromes in humans. In a rodent model of SCI, T13 spinal hemisection results in allodynia and hyperalgesia due in part to interruption of descending pathways, including serotonergic (5-HT) systems, that leads to hyperexcitability of dorsal horn neurons. To characterize further the role of 5-HT and 5-HT receptor subtypes 5-HT(1A) and 5-HT(3) in neuronal activation after hemisection, we have examined the responsiveness of dorsal horn neurons to a variety of innocuous and noxious peripheral stimuli. ⋯ In hemisected animals, both 5-HT(1A) and 5-HT(3) receptor antagonism reduced the effectiveness of 5-HT, restoring elevated evoked activity by up to 70% at the doses tested. Administration of 5-HT(1A) and 5-HT(3) receptor agonists also decreased hyperexcitability, effects prevented by pretreatment with corresponding antagonists. These results demonstrate the development of denervation supersensitivity to 5-HT following SCI, corroborate behavioral studies showing the effectiveness of 5-HT in reducing allodynia and hyperalgesia after SCI, and contribute to a mechanistic understanding of the role of 5-HT receptor subtypes in chronic central pain.
-
Comparative Study
Short-latency eye movements evoked by near-threshold galvanic vestibular stimulation.
To investigate whether the primary planes of eye and body responses to galvanic vestibular stimulation (GVS) are congruent, we have measured the binocular, three-dimensional eye movements (scleral coil technique) to bilateral bipolar GVS in six normal human subjects. Stimulation intensities were kept deliberately low in order to characterize the response to near-threshold intensities of stimulation (0.1-0.9 mA) that had been used previously to characterise body postural responses. Stimuli were applied for 4 s, but only the early responses that occurred within the initial 300 ms of turning the current on or off were measured. ⋯ However, weak horizontal eye movements, which became more prominent as the stimulus intensity was increased to 0.9 mA, were also observed. This suggests that an additional weak rotational component about the yaw axis, or a component of lateral translation in the frontal plane, is contained in the GVS-evoked signal. The overall pattern of eye movement suggests that semicircular canal afferents contribute to these low-intensity GVS responses.
-
Comparative Study
Innocuous cooling can produce nociceptive sensations that are inhibited during dynamic mechanical contact.
In a previous study of the heat grill illusion, sensations of burning and stinging were sometimes reported when the skin was cooled by as little as 2 degrees C. Informal tests subsequently indicated that these nociceptive sensations were experienced if cooling occurred when the stimulating thermode rested on the skin, but not when the thermode was cooled and then touched to the skin. In experiment 1 subjects judged the intensity of thermal (cold/warm) and nociceptive (burning/stinging) sensations when the volar surface of the forearm was cooled to 25 degrees C (1) via a static thermode (Static condition), or (2) via a cold thermode touched to the skin (Dynamic condition). ⋯ Overall, the data show that mild cooling can produce nociceptive sensations that are suppressed under conditions of dynamic mechanical contact. The latter observation suggests that cold is perceived differently during active contact with objects than during passive heat loss to the environment. Hypotheses about the physiological basis of the nociceptive sensations at mild temperatures and their possible role in the phenomena of paradoxical heat and synthetic heat are discussed.