Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Postural equilibrium is known to be controlled by sensorimotor reflexes and automatic control loops but also depends on high-level body representation in space, probably implicating the right temporoparietal cortex. Indeed, short-term prism adaptation to a 10 degrees rightward visual shift has been shown to reduce predominant postural imbalance in patients with right hemisphere damage, as it did for neglect symptoms. These effects are likely to be explained by a high level effect of prism adaptation on body and space representation, rather than by a sensorimotor effect. ⋯ Indeed, only adaptation to a leftward visual shift induced significant rightward postural bias in normal subjects. The rightward postural lateral displacement was negatively correlated with the visual vertical. Both transfer and direction specific effect of visuo-manual adaptation to prisms on postural control suggest that effects of adaptation act more on high-level postural control linked to body representation in space or at least reveal close interaction between sensorimotor plasticity and body representation.
-
It is well known that sensorimotor adaptation will transfer from the practiced to the unpracticed arm, which has been taken as evidence that adaptation is located in the brain before the divergence point for left and right arm control. We now explore whether adaptation will transfer between different movement categories as well. ⋯ This benefit of pointing persisted when the use of cognitive strategies was minimized by a concurrent, attention-demanding task, but it was lost when pointing amplitudes were very small. We conclude that adaptation is located in the brain before the divergence point for different movement categories, and that movements with a large ballistic component facilitate adaptation transfer.
-
The complex structure of the neck musculoskeletal system poses challenges to understanding central nervous system (CNS) control strategies. Examining muscle activation patterns in relation to musculoskeletal geometry and three-dimensional mechanics may reveal organizing principles. We analyzed the spatial tuning of neck muscle electromyographic (EMG) activity while subjects generated moments in three dimensions. ⋯ The focus of muscle tuning did not change with moment magnitude, demonstrating that co-contraction did not increase with load. Axial rotation was found to have a strong influence on neck muscle spatial tuning. The uniform results among subjects indicate that the CNS has consistent strategies for selecting neck muscle activations to generate moments in specific directions; however, these strategies depend on three-dimensional mechanics in a complex manner.
-
One subtype of ATP-gated ion channel, the P2X(3) receptor, is expressed primarily on peripheral sensory neurons. While it is known that P2X(3) receptors can participate in certain forms of nociceptive signaling, their involvement in neuropathic pain transmission is not known. We have examined the expression and function of P2X(3) receptors in a rat spinal nerve ligation model of neuropathic pain. ⋯ Interestingly, P2X(3) immunoreactivity and P2X(3)-like responses were also detected in a subset of larger diameter (50 micro m) neurons and the number and amplitude of these responses were unchanged after spinal nerve ligation. These results suggest that, while there appears to be a decrease in fast desensitizing P2X(3) receptors following L5/L6 nerve ligation injury, certain subsets of small and large DRG neurons maintain normal P2X(3) receptor expression and function. These remaining receptors may provide a P2X(3) receptor-mediated component to neuropathic pain.
-
Clinical Trial
Movement-related potentials associated with self-paced, cued and imagined arm movements.
Self-paced movements, movement to a cue and imagined movement have all been reported to be preceded by a prolonged negativity on averaged electroencephalograph (EEG) recordings. Considerable evidence supports an important contribution from the supplementary motor area (SMA) to this potential and all three types of movement have been shown to be associated with SMA activation. This study was designed to compare the premovement component of these movement-related potentials (MRPs) in a group of subjects who performed each of these three types of movement. ⋯ Our results indicate that the MRPs prior to the three types of movement have distinct characteristics, most notably for the NS' phase. The MRP associated with movement to a regular cue may be analogous to the S2-related negativity of the contingent negative variation (CNV). We discuss the findings in the light of current evidence from functional imaging as to the cortical areas activated in similar movements.