Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Permanent transection of a peripheral motor nerve induces a gradual elimination of whole axon collateral systems in the axotomized spinal motoneurons. There is also an initial concurrent decrease in the amount of recurrent inhibition exerted by these arbors in the spinal cord for up to 6 weeks after the injury, whereas the same reflex action returns to normal by the 12-week postoperative state. The aim of the present investigation was to study the fine structure of the intramedullary axonal arbors of axotomized alpha-motoneurons in the adult cat spinal cord following a permanent peripheral motor nerve lesion. ⋯ This study shows that the synaptic contacts made by the intramedullary axon collateral arbors of axotomized motoneurons have undergone a change in synaptic vesicle ultrastructure from spherical and clear vesicles to spherical and dense-cored vesicles at 12 weeks after the transection of their peripheral axons. We suggest that the present transformation in synaptic vesicle fine structure may also correspond to a change in the contents of these boutons. This may, in turn, be responsible for the strengthening and recovery of the recurrent inhibitory reflex action exerted by the axotomized spinal motoneurons following a prolonged permanent motor nerve injury.
-
We used the Bennett and Xie (1988) model of chronic neuropathic pain to study the effect of age on thermal and tactile sensitivity and on astrocytic activation in the dorsal horn of the spinal cord after nerve injury. Fischer 344 FBNF1 hybrid rats in three age groups, 4-6, 14-16, and 24-26 months, were studied. Rats were either unligated (day 0, control) or the left sciatic nerve was loosely ligated to cause a chronic constriction injury (CCI). ⋯ Not all the CCI rats displayed hyperalgesia to touch and to heat. Rats with an increased sensitivity to heat had increased levels of GFAP-ir in their cords; however, rats with decreased thermal sensitivity also displayed increased GFAP-ir. Thus the presence of activated astrocytes was not correlated with a single behavioral manifestation of neuropathic pain.
-
Load dependent reflex adaptations were studied in healthy subjects walking on a split-belt treadmill. Compensatory reflex responses were elicited in the right leg extensor muscles during mid-stance by a short acceleration of the right treadmill belt. Electromyographic activity (EMG) was recorded from the right medial gastrocnemius (GMR), soleus (SO) and tibialis anterior (TA) muscles of the right leg as well as from the gastrocnemius of the left unperturbed leg (GML). ⋯ Neither the EMG activity in the GM nor the reflex responses in the GMR after increasing the load changed differently in the two groups. Our results suggest that load information is not simply used in a fixed input/output relationship of the actual biomechanical conditions of a subject. Load information is rather used to slowly modify the reflex response, to achieve the desired posture during walking.
-
Pairing a cutaneous electrical stimulus of the hind-paw with stimulation of the basal forebrain produces long-term cholinergic enhancement of the responsiveness to a tactile stimulus. A short period of pairing (20 trials) increased the area of the two main components of the evoked potential by 37.1 +/- 13.5% (+/- SEM) and 37.9 +/- 6.8%, respectively. The effects lasted for the duration of the experiment (> 2 h). ⋯ Control experiments with skin stimulation alone and basal forebrain stimulation alone had only small long-term effects (approximately 10%) on the size of the evoked potential. Thus, long-term cholinergic enhancement, attributable to disinhibition and increased release of acetylcholine in the cortex during neuronal excitation by other sources, and so named because it is blocked by atropine, may be a form of long-term potentiation. The existence of such a mechanism for the control of cortical neuronal plasticity identifies the basal forebrain as a powerful modulator of long-lasting changes in cortical neuronal excitability.
-
Transcutaneous electrical nerve stimulation (TENS) is utilized to treat a variety of painful conditions. Inflamed animals present with an increased response to noxious stimuli, i.e., hyperalgesia, at the site of injury (primary hyperalgesia) and outside the site of injury (secondary hyperalgesia). Further, following acute inflammation, dorsal horn neurons show an increased responsiveness to peripherally applied stimuli, which has been termed sensitization. ⋯ Comparison of responses after TENS with baseline responses showed that the evoked responses in the majority of WDR and HT cells returned to or fell below baseline responses. TENS had no effect on responses of LT neurons. In summary, central neuron sensitization is reduced by TENS and may underlie the reduction in hyperalgesia observed after treatment with TENS.