Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
The present study investigated excitatory reflex receptive fields for various muscle reflex responses and reflex mediated ankle joint movements using randomised electrical stimulation of the dorsal and plantar surface of the foot in 12 healthy subjects. Eleven electrodes (0.5-cm2 cathodes) were mounted on the dorsal side and three on the plantar side of the foot. A low (1.5 times pain threshold) and a high (2.3 times pain threshold) stimulus intensity were used to elicit the reflexes. ⋯ These observations show that painful stimuli activate appropriate muscles depending on stimulus location to initiate the adequate withdrawal. For proximal muscles (e.g. knee flexors) the receptive field covers almost the entire foot (dorsal and plantar sides) while more distal muscles have a smaller receptive field covering only a part of the foot. This adequate withdrawal movement suggests a more refined withdrawal reflex organisation than a stereotyped flexion of all joints to avoid tissue damage.
-
Writer's cramp is a highly specific movement disorder in which handwriting is impaired while most other manual skills are often unaffected. On the basis of abnormal findings in experiments measuring the control of grip forces, it has been suggested that writer's cramp is caused by a deficit of sensorimotor integration. The aim of our study was to determine whether there is a functional link between sensory deficits, abnormalities in the control of grip force, and handwriting disorders. ⋯ These findings suggest that the elevated pretraining gripforce levels of writer's cramp patients might be a consequence of their effortful writing style and do not reflect a deficit of sensorimotor integration. Moreover, the good handwriting performance of patient S1 shows that a severe somatosensory deficit is not a sufficient condition for a handwriting disorder. These findings disagree with the sensorimotor explanation of writer's cramp.
-
Repetitive transcranial magnetic stimulation (rTMS) appears to have effects on cortical excitability that extend beyond the train of rTMS itself. These effects may be inhibitory or facilitatory and appear to depend on the frequency, intensity, duration and intertrain interval of the rTMS. Many studies assume facilitatory effects of high-frequency rTMS and inhibitory effects of low-frequency rTMS. ⋯ Although the averaged group data showed a frequency-dependent increase in cortical excitability, each subject had a different pattern of frequency tuning curve, i.e. a different modulatory effect on cortical excitability at different rTMS frequencies. The interindividual variability of these modulatory effects was still high, though less so, when the number of rTMS pulses was increased to 1,600. These findings illustrate the degree of variability of the rTMS effects in the human brain.
-
The inferior colliculus (IC) represents a mid-brain structure which integrates information from many ascending auditory pathways, descending corticotectal projections and intercollicular pathways. The processing of information is different in each of the three main subdivisions of the IC--the central nucleus (CNIC), the dorsal cortex (DCIC) and the external cortex (ECIC)--which may be distinguished morphologically as well as by different inputs and outputs. To assess the differences in information processing we compared the response properties of single neurons in individual subnuclei of the IC in anesthetized guinea pigs. ⋯ The frequency tuning (expressed in Q10 values), spontaneous activity and dominance of monotonic rate/level functions were very similar in both structures; ECIC neurons expressed a higher average threshold and a shorter average first-spike latency than did DCIC neurons. Responsiveness expressed as the average maximal firing rate to tones at the CF was significantly higher in the CNIC than in the ECIC. The results give additional support to the idea that the CNIC is a part of a fast, frequency-tuned, low threshold and intensity-sensitive ascending pathway, whereas the other two subdivisions are involved in additional processing of information that involves feedback loops and polysensory pathways.
-
The silent period after transcranial magnetic brain stimulation mainly reflects the activity of inhibitory circuits in the human motor cortex. To assess the excitability of the cortical inhibitory mechanisms responsible for the silent period after transcranial stimulation, we studied, in 15 healthy human subjects, the recovery cycle of the silent period evoked by transcranial and mixed nerve stimulation delivered with a paired stimulation technique. The recovery cycle is defined as the time course of the changes in the size or duration of a conditioned test response when pairs of stimuli (conditioning and test) are used at different conditioning-test intervals. ⋯ Paired transcranial stimulation with a figure-of-eight coil increased the duration of the test silent period only at short conditioning-test intervals. Conditioning nerve stimulation left the silent period produced by test nerve stimulation unchanged. In conclusion, after a single transcranial magnetic shock, inhibitory circuits in the human motor cortex undergo distinctive short-term changes in their excitability, probably involving different mechanisms.