Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Lattice-like perineuronal accumulations of extracellular-matrix proteoglycans have been shown to develop during postnatal maturation and to persist throughout life as perineuronal nets (PNs) in many brain regions. However, the dynamics of their reorganization in adults are as yet unknown. The aim of the present study was to examine the capability of PNs for reconstitution after experimental destruction and to search for possible consequences of extracellular-matrix degradation for neurons and glial cells. ⋯ In contrast to such transient changes, a diffuse chondroitin-sulphate proteoglycan immunoreactivity persisted in the neuropil. Loss of neurons or alterations of their structure as well as reactions of glial cells were not observed. We conclude from this study that PNs, enzymatically destroyed in the adult rat brain, can be completely reconstituted, but the restoration of their extracellular-matrix components needs several months.
-
We investigated the ability of a novel direct current (DC) polarization technique to block selectively the conduction in peripheral myelinated nerve fibers and allowing propagation in only unmyelinated fibers. In anesthetized adult rats, distal branches of the sciatic nerve (caudal cutaneous sural and tibial nerves) were exposed for electrical stimulation of A- and C-fibers. Two specially fabricated trough electrodes of different size and surface area were placed onto the sciatic nerve. ⋯ These experiments demonstrate that anodally focused DC polarization, applied utilizing two trough electrodes of different sizes, is capable of effectively, reversibly, and reproducibly blocking conduction in myelinated A-fibers evoked either electrically or naturally, while still allowing conduction to occur in the unmyelinated C-fiber population. In the context of experimental usage, we have demonstrated blocking of low-threshold A-fiber, but not C-fiber, mediated inputs to the caudal brainstem. This technique should find wide application in studies involving the processing of information conveyed centrally by the unmyelinated C-fiber afferent population, including discriminating afferent responses to peripheral stimuli, the role of C-fiber input in reflex activity, and the plasticity following injury or other manipulations.
-
Comparative Study
Comparison of sympathetic sprouting in sensory ganglia in three animal models of neuropathic pain.
Sympathetic postganglionic fibers sprout in the dorsal root ganglion (DRG) after peripheral nerve injury. Therefore, one possible contributing factor of sympathetic dependency of neuropathic pain is the extent of sympathetic sprouting in the DRG after peripheral nerve injury. ⋯ The density of sympathetic fibers in the DRG was significantly higher at all examined postoperative times than controls in the SSI model, while it was somewhat higher than controls only at the last examined postoperative time (20 weeks) in the CCI and PSI models. Therefore, data suggest that, although sympathetic changes in the DRG may contribute to neuropathic pain syndromes in the SSI model, other mechanisms seem to be more important in the CCI and PSI models at early times following peripheral nerve injury.
-
We have previously reported that grafting of fetal ventral mesencephalic (VM) tissue to the nigral region of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats, in conjunction with glial cell line-derived neurotrophic factor (GDNF) injection between nigra and striatum, restores nigrostriatal tyrosine hydroxylase (TH) immunoreactivity. In this study, we investigated the electrochemical indices of dopamine (DA) release in these grafted animals in the striatum and nigra. Adult Sprague-Dawley rats were anesthetized and unilaterally injected with 6-OHDA into the medial forebrain bundle. ⋯ On the other hand, KCl did not induce DA release in the BDNF- or PBS-bridged grafts. Immunocytochemical studies indicated that TH-positive neurons and fibers were found in the nigra and striatum after GDNF-bridged grafting. Taken together, our data suggest that fetal nigral transplantation and GDNF injection may restore the nigrostriatal DA pathway and DA release in these hemiparkinsonian animals and support the hypothesis of trophic activity of GDNF on fiber outgrowth from midbrain DA neurons.
-
The relationship between phantom limb phenomena and cortical reorganization was examined in five subjects with congenital absence of an upper limb and nine traumatic amputees. Neuromagnetic source imaging revealed minimal reorganization of primary somatosensory cortex in the congenital amputees (M=0.69 cm, SD 0.24) and the traumatic amputees without phantom limb pain (M=0.27 cm, SD 0.25); the amputees with phantom limb pain showed massive cortical reorganization (M=2.22 cm, SD 0.78). ⋯ Sensory discrimination was normal and mislocalization (referral of stimulation-induced sensation to a phantom limb) was absent in the congenital amputees. The role of peripheral and central factors in the understanding of phantom limb pain and phantom limb phenomena is discussed in view of these findings.