Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
The axotomy reaction in motoneurons after a peripheral nerve transection in the adult animal is characterized by a robust upregulation of alpha-calcitonin gene-related peptide (CGRP) messenger RNA (mRNA) together with mRNAs encoding cytoskeletal and growth-related proteins. Here we have examined whether the nature of the lesion and the age of the animal have any impact on the mRNA regulation in severed cells. Thus, the effect of a sciatic nerve transection in the adult rat was compared with, on the one hand, ventral root avulsions in the adult animal and, on the other hand, sciatic nerve transection in the immature animal. ⋯ The different responses in these paradigms suggest differences in the trophic response from surrounding glia or the trophic responsiveness of lesioned motoneurons. Also, the results may indicate different roles for the studied substances during the regenerative response of lesioned neurons. Of the substances studied here, upregulation of alpha-CGRP and p75 mRNAs best correlated with a possibility of axon regeneration.
-
Comparative Study Clinical Trial
Jaw-opening reflex after CO2 laser stimulation of the perioral region in man.
CO2 laser pulses selectively excite A-delta and C mechano-thermal nociceptors in the superficial layers of the skin. To study the jaw-opening reflex elicited by a purely nociceptive input, we delivered laser pulses to the perioral region in 15 subjects. Sensory threshold was very low (9 mJ/mm2). ⋯ We conclude that the perioral A-delta fibre input elicits a jaw-opening reflex simply by inhibiting the jaw-closers. The LSP response is mediated by a multisynaptic chain of brainstem interneurons and shares with the masseter SP2 part of the central circuit in the ponto-medullary region. We also propose that a common centre processes the various inputs for jaw opening.
-
Comparative Study Clinical Trial
Event-related potentials associated with correct and incorrect responses in a cued antisaccade task.
In an antisaccade task, subjects are instructed to inhibit a reflexive saccade towards a peripheral stimulus flash and to generate a saccade in the opposite direction. It has been shown recently that normal subjects will generate a high number of incorrect prosaccades in an antisaccade task if the fixation point is extinguished 200 ms before the stimulus appears and if a valid cue for the subsequent antisaccade is given during this gap period. In the present study we recorded cerebral event-related potentials from 19 scalp electrodes from normal subjects prior to correct and incorrect responses in a cued antisaccade task to investigate the neural processes associated with correct antisaccades and incorrect prosaccades in this task. ⋯ This potential was higher prior to correct antisaccades than prior to incorrect prosaccades. The execution of a correct antisaccade was preceded by a shift of a negative potential from the parietal hemisphere contralateral to the visual stimulus towards the parietal hemisphere ipsilateral to the stimulus. These results support the view that the supplementary eye fields participate in the inhibition of incorrect saccades in a cued antisaccade task and show that the parietal cortex participates in generating a neural representation of the visual stimulus in the hemifield ipsilateral to the stimulus before generating a motor response.
-
A region of the caudal ventrolateral medullary reticular formation (CVLM) participates in baroreceptor, vestibulosympathetic, and somatosympathetic reflexes; the adjacent retroambigual area is involved in generating respiratory-related activity and is essential for control of the upper airway during vocalization. However, little is known about the connections of the CVLM in the cat. In order to determine the locations of terminations of CVLM neurons, the anterograde tracers Phaseolus vulgaris leucoagglutinin and tetramethylrhodamine dextran amine were injected into this region. ⋯ However, the neurons projecting to the lateral tegmental field were located mainly dorsal to those projecting to the rostral ventrolateral medulla, suggesting that these neurons form two groups, possibly with different inputs. Injections of retrograde tracers into the lateral tegmental field and rostral ventrolateral medulla also produced labeled cell bodies in other regions, including the medial and inferior vestibular nuclei and nucleus solitarius. These data are consistent with the view that the CVLM of the cat is a multifunctional area that regulates blood pressure, produces vocalization, affects the shape of the oral cavity, and elicits contraction of particular facial muscles.
-
Rabbits given either electrolytic lesions of the entorhinal cortex or sham-lesions were trained to prevent a foot-shock by stepping in an activity wheel after one tone, a positive conditioned stimulus (CS+), and to ignore a different tone, a negative conditioned stimulus (CS-). Neuronal activity was recorded simultaneously in the basolateral nucleus of the amygdala, the CA1 cell field of hippocampus, anterior cingulate cortical area 24b and posterior cingulate cortical area 29c/d. The activity of neurons in the entorhinal cortex was recorded in the controls. ⋯ Posterior cingulate cortical neurons in rabbits with lesions showed discriminative activity in both extinction sessions. The results indicated that the entorhinal cortex does not play a significant role in the acquisition of discriminative avoidance behavior, under the employed conditions of training. However, the interactions of neurons in the entorhinal cortex, amygdala and cingulate cortex are essential for contextual modulation of CRs during extinction.