ASAIO journal : a peer-reviewed journal of the American Society for Artificial Internal Organs
-
Mechanical circulatory support--either ventricular assist device (VAD, left-sided systemic support) or cavopulmonary assist device (CPAD, right-sided support)--has been suggested as treatment for Fontan failure. The selection of left- versus right-sided support for failing Fontan has not been previously defined. Computer simulation and mock circulation models of pediatric Fontan patients (15-25 kg) with diastolic, systolic, and combined systolic and diastolic dysfunction were developed. ⋯ Systemic VAD support may be preferable to maintain systemic output during systolic dysfunction. Both systemic and cavopulmonary support may provide best outcome during combined systolic and diastolic dysfunction. These findings may be useful to guide clinical cavopulmonary assist strategies in failing Fontan circulations.
-
Chronic hemodialysis is associated with significant thrombophilia. Of interest, hemodialysis patients have increased carboxyhemoglobin (COHb) and exhaled carbon monoxide (CO), signs of upregulated heme oxygenase (Hmox) activity. Given that CO enhances plasmatic coagulation, we determined whether patients requiring chronic hemodialysis had an increase in endogenous CO, plasmatic hypercoagulability and decreased fibrinolytic vulnerability. ⋯ Furthermore, over half of COHF positive patients had a hypofibrinolytic state, evidenced by an abnormally prolonged time to maximum rate of lysis (53.3%, [37.9%-68.6%]) and clot lysis time (64.4%, [48.8%-78.1%]). Carbon monoxide enhanced coagulation and diminished fibrinolytic vulnerability in hemodialysis patients. Future investigation of hemodialysis, CO-related thrombophilia is warranted.
-
During veno-venous extracorporeal membrane oxygenation (VV-ECMO) support, optimization of oxygenation can be achieved by therapeutic interventions on both patient physiological variables and adjustment of ECMO settings. Based on the physiology of oxygen delivery during VV-ECMO support, we established the mathematical relationship between the variables which define the oxygenation state: hemoglobin (Hb), extracorporeal blood flow (ECBF), cardiac output (Q), and systemic oxygen consumption (VO2). ⋯ Despite the same value of SaO2, the DO2 resulting from the different combinations of Hb and ECBF progressively decreases with decreasing Hb. By demonstrating the quantitative relationship between Hb and ECBF as determinants of oxygenation during VV-ECMO support, this mathematical model could provide a theoretical basis for a rational approach to strategies to optimize oxygenation in patients on VV-ECMO.
-
Venoarterial extracorporeal life support (VA-ECLS) is a lifesaving circulatory support in hemodynamic collapse induced by miscellaneous etiologies. However, survival rates vary among etiologies. To investigate the therapeutic effectiveness of VA-ECLS in hemodynamic collapse induced by fulminant cardiomyopathy (CM), a retrospective chart review of 14 patients was conducted, among the 294 adults receiving VA-ECLS in a single institution from April 2006 to April 2013. ⋯ All of the 10 survivors, including the five experiencing dialysis-dependent acute renal failure, had their cardiac and renal function return to normal within 6 months after the episode. The VA-ECLS was a practical therapeutic option in fulminant CM. It could provide expeditious hemodynamic support and preserve organ viability essential to recovery.
-
Use of extracorporeal membrane oxygenation (ECMO) in adults has surged in recent years. Typical configurations are venovenous (VV), which provides respiratory support, or venoarterial (VA), which provides both respiratory and circulatory support. In patients supported with VV ECMO who develop hemodynamic compromise, an arterial limb can be added (venovenous-arterial ECMO) to provide additional circulatory support. ⋯ Eight patients (38.1%) died during ECMO support, four patients (19.0%) died after decannulation but before hospital discharge, and nine patients (42.9%) survived to hospital discharge. Our modest survival rate is likely related to the complexity and severity of illness of these patients, and this relative success suggests that hybrid configurations can be effective. It serves patients well to maintain a flexible and adaptable approach to ECMO configurations for their variable cardiopulmonary needs.