Paediatric anaesthesia
-
Paediatric anaesthesia · Dec 2022
Use of combined cerebral and somatic renal near infrared spectroscopy during noncardiac surgery in children: a proposed algorithm.
Cerebral near infrared spectroscopy (NIRS) monitoring has been extensively applied in neonatology and in cardiac surgery, becoming a standard in many pediatric cardiac centers. However, compensatory physiological mechanisms favor cerebral perfusion to the detriment of peripheral tissue oxygenation. Therefore, simultaneous measurement of cerebral and somatic oxygen saturation has been advocated to ease the differential diagnosis between central and peripheral sources of hypoperfusion, which may go undetected by standard monitoring and not mirrored by cerebral NIRS alone. ⋯ The algorithm describes a sequence of acts aimed to identify the putative cause of intraoperative organ tissue desaturation and suggests clinical interventions expected to restore adequate tissue perfusion. It is composed of two arms: the main arm includes patients with an observed decrease in cerebral perfusion (CrO2), the second one includes those with a stable CrSO2 with declining RrSO2. Described also are five clinical cases of infants and neonates in whom pathological alterations of organ perfusion were detected using intraoperative multisite NIRS monitoring, portrayed in the accompanying figures (Annex).
-
Paediatric anaesthesia · Dec 2022
Identifying the optimal blood pressure for cerebral autoregulation in infants after cardiac surgery by monitoring cerebrovascular reactivity - A pilot study.
Advances in the treatment of pediatric congenital heart disease have increased survival rates. Despite efforts to prevent neurological injury, many patients suffer from impaired neurodevelopmental outcomes. Compromised cerebral autoregulation can increase the risk of brain injury following pediatric cardiac surgery with cardiopulmonary bypass. Monitoring autoregulation and maintaining adequate cerebral blood flow can help prevent neurological injury. ⋯ Postoperative noninvasive autoregulation monitoring after cardiac surgery in children can be reliably and safely performed using the hemoglobin volume index and cerebral oxygenation index and provides robust data. This monitoring can be used to identify individual hemodynamic targets to optimize autoregulation, which differs from those recommended in the literature. Further evaluation of this subject is needed.