Cell transplantation
-
Cell transplantation · Jan 2012
Randomized Controlled TrialImproved cell survival and paracrine capacity of human embryonic stem cell-derived mesenchymal stem cells promote therapeutic potential for pulmonary arterial hypertension.
Although transplantation of adult bone marrow mesenchymal stem cells (BM-MSCs) holds promise in the treatment for pulmonary arterial hypertension (PAH), the poor survival and differentiation potential of adult BM-MSCs have limited their therapeutic efficiency. Here, we compared the therapeutic efficacy of human embryonic stem cell-derived MSCs (hESC-MSCs) with adult BM-MSCs for the treatment of PAH in an animal model. One week following monocrotaline (MCT)-induced PAH, mice were randomly assigned to receive phosphate-buffered saline (MCT group); 3.0×10(6) human BM-derived MSCs (BM-MSCs group) or 3.0×10(6) hESC-derived MSCs (hESC-MSCs group) via tail vein injection. ⋯ In addition, protein profiling of hESC-MSC- and BM-MSC-conditioned medium revealed a differential paracrine capacity. Classification of these factors into bioprocesses revealed that secreted factors from hESC-MSCs were preferentially involved in early embryonic development and tissue differentiation, especially blood vessel morphogenesis. We concluded that improved cell survival and paracrine capacity of hESC-MSCs provide better therapeutic efficacy than BM-MSCs in the treatment for PAH.
-
This study compares mesenchymal cells isolated from excised burn wound eschar with adipose-derived stem cells (ASCs) and dermal fibroblasts in their ability to conform to the requirements for multipotent mesenchymal stem cells (MSCs). A population of multipotent stem cells in burn eschar could be an interesting resource for tissue engineering approaches to heal burn wounds. Cells from burn eschar, dermis, and adipose tissue were assessed for relevant CD marker profiles using flow cytometry and for their trilineage differentiation ability in adipogenic, osteogenic, and chondrogenic conditions. ⋯ We conclude that the eschar-derived mesenchymal cells represent a population of multipotent stem cells. The origin of the cells from burn eschar remains unclear, but it is likely they represent a population of adult stem cells mobilized from other parts of the body in response to the burn injury. Their resemblance to ASCs could also be cause for speculation that in deep burns the subcutaneous adipose tissue might be an important stem cell source for the healing wound.
-
Cell transplantation · Jan 2012
Long-term outcome of olfactory ensheathing cell therapy for patients with complete chronic spinal cord injury.
The neurorestorative effect of the parenchymal transplantation of olfactory ensheathing cells (OECs) for cord trauma remains clinically controversial. The aim of this article is to study the long-term result of OECs for patients with complete chronic spinal cord injury (SCI). One hundred and eight patients suffered from complete chronic SCI were followed up successfully within the period of 3.47 ± 1.12 years after OEC therapy. ⋯ Nine of them (8.33%) improved their walk ability or made them rewalk by using a walker with or without assistance; 12 of 84 men (14.29%) improved their sex function. 5) MRI examinations were taken for 31 patients; there were no neoplasm, bleeding, swelling, cysts, neural tissue destruction or infection (abscess) or any other pathological changes in or around OEC transplant sites. 6) EMG examinations were done on 31 patients; 29 showed improvement and the remaining 2 had no change. PVSEP tests were performed in 31 patients; 28 showed improvements and the remaining 3 had no change. 7) No deterioration or complications were observed in our patients within the follow-up period. Our data suggest OEC therapy is safe and can improve neurological functions for patients with complete chronic SCI and ameliorate their quality of life; the AMTENT most likely plays a critical role in enhancing functional recovery after cell-based neurorestorotherapy.
-
Cell transplantation · Jan 2012
The effect of growth factors and soluble Nogo-66 receptor protein on transplanted neural stem/progenitor survival and axonal regeneration after complete transection of rat spinal cord.
Adult central mammalian axons show minimal regeneration after spinal cord injury due to loss of oligodendrocytes, demyelination of surviving axons, absence of growth-promoting molecules, and inhibitors of axonal outgrowth. In the present study, we attempted to address these impediments to regeneration by using a combinatory strategy to enhance cell survival and regeneration after complete spinal cord transection (SCT) in adult rats. The strategy comprised: 1) adult rat brain-derived neural stem/progenitor cells (NSPCs) preseeded on laminin-coated chitosan channels; 2) extramedullary chitosan channels to promote axonal regrowth and reduce the barrier caused by scarring; 3) local delivery of a novel rat soluble Nogo-66 receptor protein [NgR(310)ecto-Fc, referred to as NgR] to block the inhibitory effect of myelin-based inhibitors; and 4) local delivery of basic fibroblast growth factor, epidermal growth factor, and platelet-derived growth factor to enhance survival and promote differentiation of transplanted cells. ⋯ However, only a small number of descending corticospinal tract axons grew into the central portions of the bridges as shown by anterograde tracing of the corticospinal tract with BDA. The majority of the regenerated axons in the channels originated from local host neurons adjacent to the tissue bridges. In conclusion, we showed that growth factors increased survival of transplanted NSPCs whereas NgR enhanced axonal regeneration, but the combination did not have additive effects on functional recovery or regeneration.
-
Cell transplantation · Jan 2012
Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats.
Early vascularization of a composite in a critical bone defect is a prerequisite for ingrowth of osteogenic reparative cells to regenerate bone, since lack of vessels does not ensure a sufficient nutritional support of the bone graft. The innovation of this study was to investigate the direct and indirect effects of endothelial progenitor cells (EPCs) and cotransplanted mesenchymal stem cells (MSCs) on the in vivo neovascularization activity in a critical size defect at the early phase of endochondral ossification. Cultivated human EPCs and MSCs were loaded onto β-TCP in vitro. ⋯ Transplanted EPC release chemotactic factors (VEGF) to recruit EPCs of the host and stimulate vascularization in the bone defect. Transplantation of human EPCs displays a promising approach to improve early vascularization of a scaffold in a critical bone defect. Moreover, coculture of EPCs and MSCs demonstrate also a synergistic effect on new vessel formation and seems to be a potential osteogenic construct for in vivo application.