Cell transplantation
-
Cell transplantation · Apr 2014
Randomized Controlled TrialAutologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients.
Spinal cord injuries (SCI) cause sensory loss and motor paralysis. They are normally treated with physical therapy, but most patients fail to recover due to limited neural regeneration. Here we describe a strategy in which treatment with autologous adherent bone marrow cells is combined with physical therapy to improve motor and sensory functions in early stage chronic SCI patients. ⋯ Compared to those patients with cervical injuries, a higher rate of functional improvement was achieved in thoracic SCI patients with shorter durations of injury and smaller cord lesions. Therefore, when combined with physical therapy, autologous adherent bone marrow cell therapy appears to be a safe and promising therapy for patients with chronic SCI of traumatic origin. Randomized controlled multicenter trials are warranted.
-
Cell transplantation · Jan 2014
ReviewThe potential therapeutic applications of olfactory ensheathing cells in regenerative medicine.
Olfactory ensheathing cells (OECs) are unique glia cells restricted to the primary olfactory system including the olfactory mucosa, olfactory nerve, and the outer nerve layer of the olfactory bulb. OECs guide growing olfactory axons from the neurons of the nasal cavity olfactory mucosa to the olfactory bulb to connect both the peripheral nervous system (PNS) and central nervous system (CNS). Based on these specialized abilities of OECs, transplantation of OECs to injury sites has been widely investigated for their potential therapeutic applications in neural repair in different injuries. In this article, we reviewed the properties of OECs and their roles in olfactory regeneration and in treatment of different injuries including spinal cord injury, PNS injury, and stroke and neurodegenerative diseases.
-
Cell transplantation · Jan 2014
Comparative StudyComparison of neurological and functional outcomes after administration of granulocyte-colony-stimulating factor in motor-complete versus motor-incomplete postrehabilitated, chronic spinal cord injuries: a phase I/II study.
Granulocyte-colony-stimulating factor (G-CSF) is a major growth factor in the activation and differentiation of granulocytes. This cytokine has been widely and safely employed in different disease conditions over many years. The administration of the growth factors in spinal cord injury (SCI) has been reported elsewhere; here we have tried to see the effect of SCI severity on the neurological outcomes after neuroprotective treatment for SCI with G-CSF. ⋯ Motor-incomplete patients had significantly more improvement in ASIA motor score compared to the motor-complete patients (7.68 scores, p < 0.001); also they had significant improvement in light touch (6.42 scores, p = 0.003) and pinprick sensory scores (4.89 scores, p = 0.011). Therefore, G-CSF administration in motor-incomplete SCIs is associated with significantly higher motor improvement, and also the higher the initial ASIA Impairment Scale (AIS) grade, the less would be the final AIS change, and incomplete cases are more welcome into the future studies. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
-
Cell transplantation · Jan 2014
Case ReportsFunctional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging.
Treatment of patients sustaining a complete spinal cord injury remains an unsolved clinical problem because of the lack of spontaneous regeneration of injured central axons. A 38-year-old man sustained traumatic transection of the thoracic spinal cord at upper vertebral level Th9. At 21 months after injury, the patient presented symptoms of a clinically complete spinal cord injury (American Spinal Injury Association class A-ASIA A). ⋯ The pattern of recovery suggests functional regeneration of both efferent and afferent long-distance fibers. Imaging confirmed that the grafts had bridged the left side of the spinal cord, where the majority of the nerve grafts were implanted, and neurophysiological examinations confirmed the restitution of the integrity of the corticospinal tracts and the voluntary character of recorded muscle contractions. To our knowledge, this is the first clinical indication of the beneficial effects of transplanted autologous bulbar cells.
-
Cell transplantation · Jan 2014
Sustained running in rats administered corticosterone prevents the development of depressive behaviors and enhances hippocampal neurogenesis and synaptic plasticity without increasing neurotrophic factor levels.
We have previously shown that voluntary running acts as an anxiolytic and ameliorates deficits in hippocampal neurogenesis and spatial learning. It also reduces depression-like behaviors that are normally observed in rats that were administered either low (30 mg/kg) or moderate (40 mg/kg) doses of corticosterone (CORT). However, the protective effects of running were absent in rats treated with a high (50 mg/kg) dose of CORT. ⋯ Our results indicate that the depressive phenotype and reductions in neurogenesis that normally accompany high CORT administration could only be prevented by allowing animals to exercise both prior to and concurrently with the CORT administration period. These animals also showed increases in both synaptophysin and PSD-95 protein levels, but surprisingly, neither brain-derived neurotrophic factor (BDNF) nor insulin-like growth factor 1 (IGF-1) levels were increased in these animals. The results suggest that persistent exercise can strengthen resilience to stress by promoting hippocampal neurogenesis and increasing synaptic protein levels, thereby reducing the deleterious effects of stress.