Cell transplantation
-
Cell transplantation · Jan 2009
Functional recovery after the transplantation of neurally differentiated mesenchymal stem cells derived from bone barrow in a rat model of spinal cord injury.
This study was designed to investigate functional recovery after the transplantation of mesenchymal stem cells (MSCs) or neurally differentiated MSCs (NMSCs) derived from bone marrow in a rat model of spinal cord injury (SCI). Sprague-Dawley rats were subjected to incomplete SCI using an NYU impactor to create a free drop contusion at the T9 level. The SCI rats were then classified into three groups; MSCs, NMSCs, and phosphate-buffered saline (PBS)-treated groups. ⋯ While transplantation of MSCs led to a clear tendency of motor recovery, NMSC-treated rats had significantly improved BBB scores and showed significantly shortened initial latency, N1 latency, and P1 latency of the SSEPs compared to PBS controls. In addition, 5-bromo-2-deoxyuridine (BrdU)-prelabeled MSCs costained for BrdU and glial fibrillary acidic protein (GFAP) or myelin basic protein (MBP) were found rostrally and caudally 5 mm each from the epicenter of the necrotic cavity 4 weeks after transplantation. These results suggest that neurally differentiated cells might be an effective therapeutic source for functional recovery after SCI.
-
Cell transplantation · Jan 2008
Serum neutrophil gelatinase-associated lipocalin as a predictor of organ recovery from delayed graft function after kidney transplantation from donors after cardiac death.
Because of a worldwide shortage of renal grafts, kidneys procured from donors after cardiac death (DCD) have recently become an important source of renal transplants. However, DCD kidneys often have complications with delayed graft function (DGF) and recipients require hemodialysis (HD) in the early period after kidney transplantation (KTx). This study evaluated serum NGAL as a potential specific parameter to predict early functional recovery of transplanted DCD kidneys. ⋯ Even in these cases, serum NGAL levels decreased rapidly several days after a KTx prior to the recovery of urine output and preceding the decrease in serum creatinine level. The pattern of decline in serum NGAL was biphasic, the decrease after the second peak indicating a functional recovery within the next several days. These data suggest that monitoring of serum NGAL levels may allow us to predict graft recovery and the need for HD after a KTx from a DCD.
-
Traumatic injuries to the spinal cord lead to severe and permanent neurological deficits. Although no effective therapeutic option is currently available, recent animal studies have shown that cellular transplantation strategies hold promise to enhance functional recovery after spinal cord injury (SCI). This review is to analyze the experiments where transplantation of stem/progenitor cells produced successful functional outcome in animal models of SCI. ⋯ Directed differentiation of stem/progenitor cells to oligodendrocyte lineage prior to transplantation or modulation of microenvironment in the injured spinal cord to promote oligodendroglial differentiation seems to be an effective strategy to increase the extent of remyelination. Transplanted stem/progenitor cells can also contribute to promoting axonal regeneration by functioning as cellular scaffolds for growing axons. Combinatorial approaches using polymer scaffolds to fill the lesion cavity or introducing regeneration-promoting genes will greatly increase the efficacy of cellular transplantation strategies for SCI.
-
Cell transplantation · Jan 2007
Schwann cell transplantation improves reticulospinal axon growth and forelimb strength after severe cervical spinal cord contusion.
Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). ⋯ This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting modest supraspinal axon growth when the site of axon injury is closer to the cell body of the axotomized neuron.
-
Cell transplantation · Jan 2007
Culture of keratinocytes for transplantation without the need of feeder layer cells.
Patients with large burn wounds have a limited amount of healthy donor skin. An alternative for the autologous skin graft is transplantation with autologous keratinocytes. Conventionally, the keratinocytes are cultured with mouse feeder layer cells in medium containing fetal calf serum (FCS) to obtain sufficient numbers of cells. ⋯ Using this culture technique sufficient numbers of keratinocytes, isolated from 1 cm2 skin, were obtained to cover 400 cm2 of wound surface in 2 weeks. The results show that keratinocytes can be cultured without the need of a fibroblast feeder layer and FCS and that these cells are still able to create a fully differentiated epidermis. This culture technique can be a valuable tool for the treatment of burn wounds and further development of tissue engineered skin.