Cell transplantation
-
Cell transplantation · Jan 2020
ACE2 and TMPRSS2 Potential Involvement in Genetic Susceptibility to SARS-COV-2 in Cancer Patients.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. One open question is whether genetics could influence the severity of symptoms. Considering the limited data on cancer patients, we analyzed public data repositories limited to investigate angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) expressions and genetic variants to identify the basis of individual susceptibility to SARS-CoV-2. ⋯ Variants were present at low frequency (range 0% to 3%) and among those with the highest frequency, the variant S19P belongs to the SARS-CoV-2 spike protein binding site and it was exclusively present in Africans with a frequency of 0.2%. The mechanisms of ACE2 and TMPRSS2 regulation could be targeted for preventive and therapeutic purposes in the whole population and especially in cancer patients. Further studies are needed to show a direct correlation of ACE2 and TMPRSS2 expressions in cancer patients and the incidence of COVID-19.
-
Cell transplantation · Dec 2019
Screening Hub Genes as Prognostic Biomarkers of Hepatocellular Carcinoma by Bioinformatics Analysis.
Hepatocellular carcinoma (HCC) is a widespread, common type of cancer in Asian countries, and the need for biomarker-matched molecularly targeted therapy for HCC has been increasingly recognized. However, the effective treatment for HCC is unclear. Therefore, identifying additional hub genes and pathways as novel prognostic biomarkers for HCC is necessary. ⋯ CCNB1, CDK1, and RRM2 were enriched in the p53 signaling pathway, and CCNB1, CDK1, and BUB1B were enriched in the cell cycle. In brief, we screened 15 hub genes and pathways to identify potential prognostic markers for HCC treatment. However, the specific occurrence and development of HCC with expression of the hub genes should be verified in vivo and in vitro.
-
Cell transplantation · Dec 2019
Cyclooxygenase 2 Promotes Proliferation and Invasion in Ovarian Cancer Cells via the PGE2/NF-κB Pathway.
Ovarian cancer is the leading cause of death among gynecological malignancies. Cyclooxygenase 2 is widely expressed in various cancer cells and participates in the occurrence and development of tumors by regulating a variety of downstream signaling pathways. However, the function and molecular mechanisms of cyclooxygenase 2 remain unclear in ovarian cancer. ⋯ Besides, celecoxib inhibited SKOV3 cell growth in the xenograft tumor model. These data suggest that high expression of cyclooxygenase 2 promotes the proliferation and invasion of ovarian cancer cells through the prostaglandin E2/nuclear factor-kappa B signaling pathway. Cyclooxygenase 2 may be a potential therapeutic target for the treatment of ovarian cancer.
-
Cell transplantation · Nov 2019
Case ReportsAdditional Use of Synovial Mesenchymal Stem Cell Transplantation Following Surgical Repair of a Complex Degenerative Tear of the Medial Meniscus of the Knee: A Case Report.
Complex degenerative tears of the medial meniscus in the knee are usually treated using meniscectomy. However, this procedure increases the risk of osteoarthritis, while other treatments aimed at meniscal repair remain challenging due to the high possibility of failure. The use of synovial mesenchymal stem cells (MSCs) is an attractive additional approach for meniscal repair, as these cells have high proliferative and chondrogenic potential. ⋯ This first-in-human study confirmed that the combination of surgical repair and synovial MSC transplantation improved the clinical symptoms in patients with a complex degenerative tear of the medial meniscus. No adverse events occurred that necessitated treatment discontinuation. These findings will serve as pilot data for a future prospective study.
-
Cell transplantation · Nov 2019
Exosomes from Bone Marrow Mesenchymal Stem Cells Inhibit Neuronal Apoptosis and Promote Motor Function Recovery via the Wnt/β-catenin Signaling Pathway.
Severe spinal cord injury (SCI) is caused by external mechanical injury, resulting in unrecoverable neurological injury. Recent studies have shown that exosomes derived from bone marrow mesenchymal stem cells (BMSCs-Exos) might be valuable paracrine molecules in the treatment of SCI. In this study, we designed SCI models in vivo and in vitro and then investigated the possible mechanism of successful repair by BMSCs-Exos. ⋯ The results of western bolt and qRT-PCR demonstrated that BMSCs-Exos could activate the Wnt/β-catenin signaling pathway effectively. In vitro, we found that inhibition of the Wnt/β-catenin signaling pathway could promote neuronal apoptosis following lipopolysaccharide (LPS) induction. These results demonstrated that BMSCs-Exos may be a promising therapeutic for SCI by activating the Wnt/β-catenin signaling pathway.