Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · Nov 2002
ReviewCharacterization of untreated gliomas by magnetic resonance spectroscopic imaging.
Although there are trends in the morphologic, metabolic, hemodynamic, and structural properties of untreated gliomas that are reflected in MR measurements, there is considerable heterogeneity both within and between lesions of the same histologic grade. The spatial extent of the abnormality in ADC and RA images is similar to the T2 lesion, but there is no obvious difference in intensity between grades. The rCBV is significantly increased in the enhancing volume of grade 4 lesions but is similar or reduced in intensity for most grade 3 lesions. ⋯ The correlations between rCBV, Cho, and ADC suggest that cellularity, membrane turnover, and vascularity are linked in grade 4 lesions. It is not clear whether there is any relationship between these parameters regions in grade 2 or grade 3 gliomas. While further work is required to optimize the methodology associated with these MR parameters, it seems likely that combining the information from such measurements may be valuable for predicting outcome and tailoring therapy to individual patients.
-
Neuroimaging Clin. N. Am. · Nov 2002
ReviewInnovations in design and delivery of chemotherapy for brain tumors.
Effectiveness of chemotherapy in patients with brain tumors is hampered by the presence of the blood-brain barrier and drug resistance. In recent years, significant progress has been made in devising innovative methods of design and delivery of chemotherapy for brain tumors. This article has surveyed the issues of blood-brain barrier and drug resistance and explored some of the strategies used to circumvent problems associated with chemotherapy failure in patients with brain tumors.
-
A wide variety of metabolic features of brain tumors can be imaged using PET, including glucose metabolism, blood flow, oxygen consumption, amino acid metabolism, and lipid synthesis. Currently, FDG is the most widely available PET tracer for body imaging and brain imaging. Malignant brain tumors, like many other soft tissue tumors, show increased glucose metabolism, which is reflected on FDG-PET imaging. ⋯ Other tracers, such as 11C-methionine and FCH, also avidly accumulate in brain tumors and have the advantage of low background cortical activity. The relationship between degree of uptake of these agents and tumor grade is not established. These tracers may be useful in specific clinical situations, however, such as tumor localization for treatment planning or evaluation of low-grade tumors.
-
The grave outlook for malignant glioma patients in spite of improvements to current modalities has ushered in new approaches to therapy. Viruses have emerged on the scene and gained attention for their ability to play essentially two roles: first, as vectors for therapeutic gene delivery and second, as engineered infectious agents capable of selectively lysing tumor cells. ⋯ Clinical oncolytic studies, on the other hand, have evaluated a conditionally replicating HSV as an antineoplastic agent. Despite some promise afforded by these trials, further studies are warranted; the investigation of additional viruses to play these roles is inevitable and is now precedented.
-
Assessment of the oxygenation status of brain tumors has been studied increasingly with imaging techniques in light of recent advances in oncology. Tumor oxygen tension is a critical factor influencing the effectiveness of radiation and chemotherapy and malignant progression. Hypoxic tumors are resistant to treatment, and prognostic value of tumor oxygen status is shown in head and neck tumors. ⋯ Quantification of cerebral blood oxygen saturation using MR imaging has promising clinical applications; however, technical difficulties have to be resolved. Blood oxygen level dependent MR imaging is an emerging technique to evaluate the cerebral blood oxygen saturation, and it has the potential and versatility to assess oxygenation status of brain tumors. Upon improvement and validation of current MR techniques, better diagnostic, prognostic, and treatment monitoring capabilities can be provided for patients with brain tumors.