Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · Aug 2017
ReviewDual-Energy Computed Tomography: Physical Principles, Approaches to Scanning, Usage, and Implementation: Part 1.
There are increasing applications of dual-energy computed tomography (CT), a type of spectral CT, in neuroradiology and head and neck imaging. In this 2-part review, the fundamental principles underlying spectral CT scanning and the major considerations in implementing this type of scanning in clinical practice are reviewed. In the first part of this 2-part review, the physical principles underlying spectral CT scanning are reviewed, followed by an overview of the different approaches for spectral CT scanning, including a discussion of the strengths and challenges encountered with each approach.
-
Neuroimaging Clin. N. Am. · Aug 2017
ReviewDual-Energy Computed Tomography: Physical Principles, Approaches to Scanning, Usage, and Implementation: Part 2.
There are increasing applications and use of spectral computed tomography or dual-energy computed tomography (DECT) in neuroradiology and head and neck imaging in routine clinical practice. Part 1 of this 2-part review covered fundamental physical principles underlying DECT scanning and the different approaches for scanning. Part 2 focuses on important and practical considerations for implementing and using DECT in clinical practice, including a review of different images and reconstructions produced by these scanners and important and practical issues, ranging from image quality and radiation dose to workflow-related aspects of DECT scanning, that routinely come up during operationalization of DECT.
-
Neuroimaging Clin. N. Am. · Aug 2017
ReviewDual-Energy Computed Tomography of the Neck: A Pictorial Review of Normal Anatomy, Variants, and Pathologic Entities Using Different Energy Reconstructions and Material Decomposition Maps.
There is increasing use of dual-energy computed tomography (DECT) for the evaluation of head and neck pathologic entities. Optimal DECT utilization requires familiarity with the appearance of normal tissues variants, and pathologic entities on different DECT reconstructions that may be used in clinical practice. The purpose of this article is to provide a practical, pictorial review of the appearance of normal anatomic structures and different neoplastic and nonneoplastic head and neck pathologic entities on commonly used DECT reconstructions.
-
Neuroimaging Clin. N. Am. · Aug 2017
ReviewAdvanced Tissue Characterization and Texture Analysis Using Dual-Energy Computed Tomography: Horizons and Emerging Applications.
In the last article of this issue, advanced analysis capabilities of DECT is reviewed, including spectral Hounsfield unit attenuation curves, virtual monochromatic images, material decomposition maps, tissue effective Z determination, and other advanced post-processing DECT tools, followed by different methods of analysis of the attenuation curves generated using DECT. The article concludes with exciting future horizons and potential applications, such as the use of the rich quantitative data in dual energy CT scans for texture or radiomic analysis and the use of machine learning methods for generation of prediction models using spectral data.
-
Neuroimaging Clin. N. Am. · Aug 2017
ReviewDual Energy Computed Tomography Applications for the Evaluation of the Spine.
Capturing the energy-dependent x-ray attenuation of different tissues, dual-energy computed tomography offers multiple benefits in the imaging of the spine, such as bone and iodinated contrast removal, monosodium urate imaging, and robust reduction of beam-hardening artifacts. The emerging new applications of this technique include bone marrow imaging in acute trauma and myeloinfiltrative disorders, improved bone density determination, and noninvasive assessment of spinal gout.