Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · Feb 2021
ReviewImaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis.
Radiographic monitoring of posttreatment glioblastoma is important for clinical trials and determining next steps in management. Evaluation for tumor progression is confounded by the presence of treatment-related radiographic changes, making a definitive determination less straight-forward. The purpose of this article was to describe imaging tools available for assessing treatment response in glioblastoma, as well as to highlight the definitions, pathophysiology, and imaging features typical of true progression, pseudoprogression, pseudoresponse, and radiation necrosis.
-
Neurovascular uncoupling (NVU) is one of the most important confounds of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMR imaging) in the setting of focal brain lesions such as brain tumors. This article reviews the assessment of NVU related to focal brain lesions with emphasis on the use of cerebrovascular reactivity mapping measurement methods and resting state BOLD fMR imaging metrics in the detection of NVU, as well as the use of amplitude of low-frequency fluctuation metrics to mitigate the effects of NVU on clinical fMR imaging activation.
-
Neuroimaging Clin. N. Am. · Nov 2020
ReviewMachine Learning Applications for Head and Neck Imaging.
The head and neck (HN) consists of a large number of vital anatomic structures within a compact area. Imaging plays a central role in the diagnosis and management of major disorders affecting the HN. ⋯ It categorizes ML applications in HN imaging into deep learning and traditional ML applications and provides examples of each category. It also discusses the main challenges facing the successful deployment of ML-based applications in the clinical setting and provides suggestions for addressing these challenges.
-
Neuroimaging Clin. N. Am. · Nov 2020
ReviewOverview of Machine Learning Part 1: Fundamentals and Classic Approaches.
The extensive body of research and advances in machine learning (ML) and the availability of a large volume of patient data make ML a powerful tool for producing models with the potential for widespread deployment in clinical settings. This article provides an overview of the classic supervised and unsupervised ML methods as well as fundamental concepts required for understanding how to develop generalizable and high-performing ML applications. It also describes the important steps for developing a ML model and how decisions made in these steps affect model performance and ability to generalize.
-
Neuroimaging Clin. N. Am. · Nov 2020
ReviewArtificial Intelligence Applications for Workflow, Process Optimization and Predictive Analytics.
There is great potential for artificial intelligence (AI) applications, especially machine learning and natural language processing, in medical imaging. Much attention has been garnered by the image analysis tasks for diagnostic decision support and precision medicine, but there are many other potential applications of AI in radiology and have potential to enhance all levels of the radiology workflow and practice, including workflow optimization and support for interpretation tasks, quality and safety, and operational efficiency. This article reviews the important potential applications of informatics and AI related to process improvement and operations in the radiology department.