Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · Nov 2020
ReviewAn East Coast Perspective on Artificial Intelligence and Machine Learning: Part 1: Hemorrhagic Stroke Imaging and Triage.
Hemorrhagic stroke is a medical emergency. Artificial intelligence techniques and algorithms may be used to automatically detect and quantitate intracranial hemorrhage in a semiautomated fashion. ⋯ This article reviews artificial intelligence algorithms for intracranial hemorrhage detection, quantification, and prognostication. Multiple algorithms currently being explored are described and illustrated with the help of examples.
-
Neuroimaging Clin. N. Am. · Nov 2020
ReviewMachine Learning Applications for Head and Neck Imaging.
The head and neck (HN) consists of a large number of vital anatomic structures within a compact area. Imaging plays a central role in the diagnosis and management of major disorders affecting the HN. ⋯ It categorizes ML applications in HN imaging into deep learning and traditional ML applications and provides examples of each category. It also discusses the main challenges facing the successful deployment of ML-based applications in the clinical setting and provides suggestions for addressing these challenges.
-
Neuroimaging Clin. N. Am. · Nov 2020
ReviewOverview of Machine Learning Part 1: Fundamentals and Classic Approaches.
The extensive body of research and advances in machine learning (ML) and the availability of a large volume of patient data make ML a powerful tool for producing models with the potential for widespread deployment in clinical settings. This article provides an overview of the classic supervised and unsupervised ML methods as well as fundamental concepts required for understanding how to develop generalizable and high-performing ML applications. It also describes the important steps for developing a ML model and how decisions made in these steps affect model performance and ability to generalize.
-
Neuroimaging Clin. N. Am. · Nov 2020
ReviewArtificial Intelligence Applications for Workflow, Process Optimization and Predictive Analytics.
There is great potential for artificial intelligence (AI) applications, especially machine learning and natural language processing, in medical imaging. Much attention has been garnered by the image analysis tasks for diagnostic decision support and precision medicine, but there are many other potential applications of AI in radiology and have potential to enhance all levels of the radiology workflow and practice, including workflow optimization and support for interpretation tasks, quality and safety, and operational efficiency. This article reviews the important potential applications of informatics and AI related to process improvement and operations in the radiology department.
-
This article reviews the history of artificial intelligence and introduces the reader to major events that prompted interest in the field, as well as pitfalls and challenges that have slowed its development. The purpose of this article is to provide a high-level historical perspective on the development of the field over the past decades, highlighting the potential of the field for transforming health care, but also the importance of setting realistic expectations for artificial intelligence applications to avoid repeating historical cyclical trends and a third "artificial intelligence winter."