Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · Nov 2017
ReviewTen Key Observations on the Analysis of Resting-state Functional MR Imaging Data Using Independent Component Analysis.
For more than 20 years, the powerful, flexible family of independent component analysis (ICA) techniques has been used to examine spatial, temporal, and subject variation in functional magnetic resonance (fMR) imaging data. This article provides an overview of 10 key principles in the basic and advanced application of ICA to resting-state fMR imaging. ICA's core advantages include robustness to artifact; false-positives and autocorrelation; adaptability to variant study designs; agnosticism to the temporal evolution of fMR imaging signals; and ability to extract, identify, and analyze neural networks. ICA remains in the vanguard of fMRI methods development.
-
Neuroimaging Clin. N. Am. · Nov 2017
ReviewGraph Theoretic Analysis of Resting State Functional MR Imaging.
Graph theoretic analyses applied to examine the brain at rest have played a critical role in clarifying the foundations of the brain's intrinsic and task-related activity. There are many opportunities for clinical scientists to describe and predict dysfunction using a network perspective. ⋯ Major practices, concepts, and findings are concisely reviewed. The theoretic and practical frontiers of resting state functional MR imaging are highlighted with observations about major avenues for conceptual advances and clinical translation.
-
Neuroimaging Clin. N. Am. · Aug 2017
ReviewDual-Energy Computed Tomography: Physical Principles, Approaches to Scanning, Usage, and Implementation: Part 2.
There are increasing applications and use of spectral computed tomography or dual-energy computed tomography (DECT) in neuroradiology and head and neck imaging in routine clinical practice. Part 1 of this 2-part review covered fundamental physical principles underlying DECT scanning and the different approaches for scanning. Part 2 focuses on important and practical considerations for implementing and using DECT in clinical practice, including a review of different images and reconstructions produced by these scanners and important and practical issues, ranging from image quality and radiation dose to workflow-related aspects of DECT scanning, that routinely come up during operationalization of DECT.
-
Neuroimaging Clin. N. Am. · Aug 2017
ReviewMiscellaneous and Emerging Applications of Dual-Energy Computed Tomography for the Evaluation of Intracranial Pathology.
Dual-energy computed tomography (CT) has the potential to improve detection of abnormalities and increase diagnostic confidence in the evaluation of a variety of neurologic conditions by using different x-ray energy-dependent absorption behaviors of different materials. This article reviews the virtual monochromatic imaging applications of dual-energy CT, particularly material decomposition algorithms to improve lesion conspicuity, define lesion-normal tissue interface using different reconstruction techniques, and discuss miscellaneous emerging applications of dual-energy CT for neuroimaging, with an emphasis on their potential clinical utility.
-
Neuroimaging Clin. N. Am. · Aug 2017
ReviewRoutine Dual-Energy Computed Tomography Scanning of the Neck in Clinical Practice: A Single-Institution Experience.
There is increasing use and popularity of dual-energy computed tomography (DECT) in many subspecialties in radiology. This article reviews the practical workflow implications of routine DECT scanning based on the experience at a single institution where a large percentage of elective neck CTs are acquired in DECT mode. The article reviews factors both on the production (technologist) and on the interpretation (radiologist) side, focusing on challenges posed and potential solutions for seamless workflow implementation.