Statistical methods in medical research
-
Stat Methods Med Res · Feb 2016
Comparative StudyAnalyzing repeated measures semi-continuous data, with application to an alcohol dependence study.
Two-part random effects models (Olsen and Schafer,(1) Tooze et al.(2)) have been applied to repeated measures of semi-continuous data, characterized by a mixture of a substantial proportion of zero values and a skewed distribution of positive values. In the original formulation of this model, the natural logarithm of the positive values is assumed to follow a normal distribution with a constant variance parameter. In this article, we review and consider three extensions of this model, allowing the positive values to follow (a) a generalized gamma distribution, (b) a log-skew-normal distribution, and (c) a normal distribution after the Box-Cox transformation. ⋯ We find that all three models provide a significantly better fit than the log-normal model, and there exists strong evidence for heteroscedasticity. We also compare the three models by the likelihood ratio tests for non-nested hypotheses (Vuong(3)). The results suggest that the generalized gamma distribution provides the best fit, though no statistically significant differences are found in pairwise model comparisons.
-
When the frequency of occurrence for an event of interest follows a Poisson distribution, we develop asymptotic and exact procedures for testing non-equality, non-inferiority and equivalence, as well as asymptotic and exact interval estimators for the ratio of mean frequencies between two treatments under a simple crossover design. Using Monte Carlo simulations, we evaluate the performance of these test procedures and interval estimators in a variety of situations. ⋯ However, the exact test procedure and exact interval estimator can be of use when the number of patients per group is small. We use a double-blind randomized crossover trial comparing salmeterol with a placebo in exacerbations of asthma to illustrate the practical use of these estimators.
-
Stat Methods Med Res · Dec 2013
Confidence interval estimation for the Bland-Altman limits of agreement with multiple observations per individual.
The limits of agreement (LoA) method proposed by Bland and Altman has become a standard for assessing agreement between different methods measuring the same quantity. Virtually, all method comparison studies have reported only point estimates of LoA due largely to the lack of simple confidence interval procedures. In this article, we address confidence interval estimation for LoA when multiple measurements per individual are available. ⋯ As shown by the worked examples, the construction of these confidence intervals requires only quantiles from the standard normal and chi-square distributions. Simulation results show the proposed procedures perform well. A SAS macro implementing the methods is available on the publisher's website.
-
Estimating causal effects from incomplete data requires additional and inherently untestable assumptions regarding the mechanism giving rise to the missing data. We show that using causal diagrams to represent these additional assumptions both complements and clarifies some of the central issues in missing data theory, such as Rubin's classification of missingness mechanisms (as missing completely at random (MCAR), missing at random (MAR) or missing not at random (MNAR)) and the circumstances in which causal effects can be estimated without bias by analysing only the subjects with complete data. In doing so, we formally extend the back-door criterion of Pearl and others for use in incomplete data examples. These ideas are illustrated with an example drawn from an occupational cohort study of the effect of cosmic radiation on skin cancer incidence.
-
Stat Methods Med Res · Jun 2012
Propensity scores: from naive enthusiasm to intuitive understanding.
Estimation of the effect of a binary exposure on an outcome in the presence of confounding is often carried out via outcome regression modelling. An alternative approach is to use propensity score methodology. The propensity score is the conditional probability of receiving the exposure given the observed covariates and can be used, under the assumption of no unmeasured confounders, to estimate the causal effect of the exposure. ⋯ We outline useful extensions of propensity score methodology and discuss directions for future research. Propensity score methods remain controversial and there is no consensus as to when, if ever, they should be used in place of traditional outcome regression models. We therefore end with a discussion of the relative advantages and disadvantages of each.