Nature genetics
-
Alteration of correct splicing patterns by disruption of an exonic splicing enhancer may be a frequent mechanism by which point mutations cause genetic diseases. Spinal muscular atrophy results from the lack of functional survival of motor neuron 1 gene (SMN1), even though all affected individuals carry a nearly identical, normal SMN2 gene. ⋯ Using ESE motif-prediction tools, mutational analysis and in vivo and in vitro splicing assays, we show that this single-nucleotide change occurs within a heptamer motif of an exonic splicing enhancer, which in SMN1 is recognized directly by SF2/ASF. The abrogation of the SF2/ASF-dependent ESE is the basis for inefficient inclusion of exon 7 in SMN2, resulting in the spinal muscular atrophy phenotype.
-
We isolated NSD1 from the 5q35 breakpoint in an individual with Sotos syndrome harboring a chromosomal translocation. We identified 1 nonsense, 3 frameshift and 20 submicroscopic deletion mutations of NSD1 among 42 individuals with sporadic cases of Sotos syndrome. The results indicate that haploinsufficiency of NSD1 is the major cause of Sotos syndrome.
-
Familial cold autoinflammatory syndrome (FCAS, MIM 120100), commonly known as familial cold urticaria (FCU), is an autosomal-dominant systemic inflammatory disease characterized by intermittent episodes of rash, arthralgia, fever and conjunctivitis after generalized exposure to cold. FCAS was previously mapped to a 10-cM region on chromosome 1q44 (refs. 5,6). ⋯ This resulted in the identification of four distinct mutations in a gene that segregated with the disorder in three families with FCAS and one family with MWS. This gene, called CIAS1, is expressed in peripheral blood leukocytes and encodes a protein with a pyrin domain, a nucleotide-binding site (NBS, NACHT subfamily) domain and a leucine-rich repeat (LRR) motif region, suggesting a role in the regulation of inflammation and apoptosis.