European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Review
Pregnancy-related pelvic girdle pain (PPP), I: Terminology, clinical presentation, and prevalence.
Pregnancy-related lumbopelvic pain has puzzled medicine for a long time. The present systematic review focuses on terminology, clinical presentation, and prevalence. Numerous terms are used, as if they indicated one and the same entity. ⋯ Strenuous work, previous low back pain, and previous PPP and/or PLBP are risk factors, and the inclusion/exclusion of high-risk subgroups influences prevalence. Of all patients, about one-half have PPP, one-third PLBP, and one-sixth both conditions combined. Overall, the literature reveals that PPP deserves serious attention from the clinical and research communities, at all times and in all countries.
-
The objectives of this study were to quantify the efficacy of vertebroplasty according to: (1) damage and (2) cement quantity (fill) and modulus. Vertebral body damage was numerically simulated using a previously validated two-dimensional finite-element model coupled with an elasto-plastic modulus reduction (EPMR) scheme. The effects of cement fill (% marrow replaced by cement, % MRC) and cement modulus on vertebral apparent modulus and trabecular bone tissue stress concentrations were parametrically assessed for four EPMR damage models (19%, 33%, 60%, and 91% modulus reduction). ⋯ For complete cement fill, however, a PMMA cement modulus produced approximately a 2-fold increase (82%) in vertebral apparent modulus relative to the undamaged vertebral body. Increasing the cement modulus to 9 GPa increased the vertebral apparent modulus over 2.5-fold (158%) relative to the undamaged state. The EPMR damage scheme and repair simulations performed in this study will help clinicians and cement manufacturers to improve vertebroplasty procedures.
-
Whether injuries to the alar ligaments could be responsible for complaints of patients having whiplash injury in the upper cervical spine is still controversially discussed. It is known that these ligaments protect the upper cervical spine against excessive lateral bending and axial rotation movements. The objective of the present in vitro study was therefore to examine whether the alar ligaments or any other structures of the cervical spine are damaged in side collisions. ⋯ In vitro low-speed side collisions caused functional and structural injury to discoligamentous structures of the lower cervical spine, but did not damage the alar ligaments. Since the effects of muscle forces were not taken into account, the present in vitro study reflects a worst-case scenario. Injury thresholds should therefore not be transferred to reality.
-
Case Reports
Spinal tumors in coexisting degenerative spine disease--a differential diagnostic problem.
The clinical presentation of spinal tumors is known to vary, in many instances causing a delay in diagnosis and treatment, especially with benign tumors. Neck or back pain and sciatica, with or without neurological deficits, are mostly caused by degenerative spine and disc disease. Spinal tumors are rare, and the possibility of concurrent signs of degenerative changes in the spine is high. ⋯ There was an incidence of 0.5% of patients in which a spinal tumor was responsible for symptoms thought to be of degenerative origin. However, this corresponds to 28.6% of all spine-tumor patients in this series. MRI should be widely used to exclude a tumor above the level of degenerative pathology.
-
In a 63-year-old, 165-cm-tall woman with a history of repeated tick bites, dilative cardiomyopathy, osteoporosis, progressive head ptosis with neck stiffness and cervical pain developed. The family history was positive for thyroid dysfunction and neuromuscular disorders. Neurological examination revealed prominent forward head drop, weak anteflexion and retroflexion, nuchal rigidity, weakness of the shoulder girdle, cogwheel rigidity, and tetraspasticity. ⋯ The response to anti-Parkinson medication was poor. In conclusion, dropped head syndrome (DHS) may be due to multi-organ mitochondriopathy, manifesting as Parkinsonism, tetraspasticity, dilative cardiomyopathy, osteoporosis, short stature, and myopathy. Anti-Parkinson medication is of limited effect.