European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Minimally invasive lumbar fusion techniques have been developed in recent 20 years. The goals of these procedures are to reduce approach-related soft tissue injury, postoperative pain, and disability while allowing the surgery to be conducted in an effective manner. There have been no prospective clinical reports published on the comparison of minimally invasive transforaminal lumbar interbody fusion as revision surgery for patients previously treated by open discectomy and decompression or a traditional open approach. ⋯ One case of nonunion was observed from each group. Minimally invasive TLIF is a safe and effective procedure for treatment of selected revision patients previously treated by open surgery with some potential advantages. However, this technique needs longer X-ray exposure time.
-
An association between progression of cervical disc degeneration and that of lumbar disc degeneration has been considered to exist. To date, however, this association has not yet been adequately studied. Age-related changes in the cervical intervertebral discs were evaluated by magnetic resonance imaging (MRI) in patients with lumbar disc herniation, and compared with the MRI findings of healthy volunteers without lower back pain. ⋯ None of the MRI findings was significantly associated with the gender, smoking, sports activities, or BMI. As compared to healthy volunteers, patients with lumbar disc herniation showed a higher prevalence of decrease in signal intensity of intervertebral disc and posterior disc protrusion on MRI of the cervical spine. The result of this study suggests that disc degeneration appears to be a systemic phenomenon.
-
Bone morphogenetic protein (BMP) is commonly used as an ICBG substitute for transforaminal lumbar interbody spine fusion (TLIF). However, multiple recent reports have raised concerns regarding a substantial incidence of perioperative radiculopathy. Also, given the serious complications reported with anterior cervical BMP use, risks related to swelling and edema with TLIF need to be clarified. ⋯ Overall, this study demonstrates a modest complication rate for TLIF using rhBMP-2. While perioperative complications which appeared specific to BMP usage were noted, they occurred infrequently. It will be necessary to weigh this incidence of complications against the complication rate associated with ICBG harvest and any differential benefit in obtaining a solid arthrodesis.
-
Lateral transpsoas interbody fusion (LTIF) is a minimally invasive technique that permits interbody fusion utilizing cages placed via a direct lateral retroperitoneal approach. We sought to describe the locations of relevant neurovascular structures based on MRI with respect to this novel surgical approach. We retrospectively reviewed consecutive lumbosacral spine MRI scans in 43 skeletally mature adults. ⋯ For right-sided approaches, this rose to 7.0% at L1-2, 7.0% at L2-3, 9.3% at L3-4 and 44.2% at L4-5, largely because of the relatively posterior right-sided vasculature. A relationship between the position of psoas muscle and lumbar plexus is described which allows use of the psoas position as a proxy for lumbar plexus position to identify patients who may be at risk, particularly at the L4-5 level. Further study will establish the clinical relevance of these measurements and the ability of neurovascular structures to be retracted without significant injury.
-
Extreme/direct lateral interbody fusion (X/DLIF) has been used to treat various lumbar diseases. However, it involves risks to injure the lumbar plexus and abdominal large vessels when it gains access to the lumbar spine via lateral approach that passes through the retroperitoneal fat and psoas major muscle. This study was aimed to determine the distribution of psoas major and abdominal large vessels at lumbar intervertebral spaces in order to select an appropriate X/DLIF approach to avoid nerve and large vessels injury. ⋯ The results show vena cava migrate from the right of zone A to the right of zone I at L1/2-L4/5; abdominal aorta was located mostly to the left of zone A at L1/2-L3/4 and divided into bilateral iliac arteries at L4/5; Psoas major was tenuous and dorsal at L1/2 and L2/3, large and ventral at L3/4 and L4/5. Combined with the distribution of nerve roots reported by Moro, X/DLIF approach is safe via zones II-III at L1/2 and L2/3, and via zone II at L3/4. At L4/5, it is safe via zones I-II in left and via zone II in right side, respectively.