European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Case Reports
Spontaneous spinal epidural haematoma during Factor Xa inhibitor treatment (Rivaroxaban).
We report on a 61-year-old female patient who developed a spontaneous spinal epidural haematoma (SSEH) after being treated by rivaroxaban, a new agent for the prevention of venous thromboembolic events in orthopaedic surgery. Although the pathogenesis of SSEH is unclear, anticoagulant therapy is a known risk factor. The patient sustained a sudden onset of severe back pain in the thoracic spine, followed by paraplegia below T8, 2 days after proximal tibial osteotomy and rivaroxaban therapy. ⋯ Whilst preparing for the emergency evacuation of the SSEH, the neurological symptoms recovered spontaneously 4 h after onset without surgery. After monitored bed rest for 48 h the MRI was repeated and the SSEH was no longer present. This rare condition of spinal cord compression and unusually rapid spontaneous recovery has not previously been reported following rivaroxaban therapy.
-
Adjacent level degeneration that occurs above and/or below long fusion constructs is a documented clinical problem that is widely believed to be associated with the considerable change in stiffness caused by the fusion. Some researchers have suggested that early degeneration at spinal joints adjacent to a fusion could be treated by implanting total disc replacements at these levels. It is thought that further degeneration could be prevented through the disc replacement's design aims to reproduce normal disc heights, kinematics and tissue loading. For this reason, there is a clinical need to evaluate if a total disc replacement can maintain both the quantity of motion (i.e. range) and the quality of motion (i.e. center of rotation and coupling) at segments adjacent to a long spinal fusion. The purpose of this study was to experimentally evaluate range of motion (ROM-the intervertebral motion measured) and helical axis of motion (HAM) changes due to one- and two-level Maverick total disc replacement (TDR) adjacent to a long spinal fusion. ⋯ The present results demonstrated that one or two Maverick discs implanted subjacent to a long thoracolumbar fusion preserved considerable and intact-like ranges of motion and maintained motion patterns similar to the intact specimen, in this ex vivo study with applied pure moments and compressive follower preload. The hybrid analysis demonstrated that, after fusion, the TDR-implanted levels are required to undergo large rotations, relative to those necessary before fusion, in order to achieve the same motion between T8 and S1. Additional clinical and biomechanical research is necessary to determine if such a kinematic demand would be made on these levels clinically and the biomechanical performance of these implants if it were.
-
The Cobb technique is the universally accepted method for measuring the severity of spinal deformities. Traditionally, Cobb angles have been measured using protractor and pencil on hardcopy radiographic films. The new generation of mobile 'smartphones' make accurate angle measurement possible using an integrated accelerometer, providing a potentially useful clinical tool for assessing Cobb angles. The purpose of this study was to compare Cobb angle measurements performed using a smartphone and traditional protractor in a series of 20 adolescent idiopathic scoliosis patients. ⋯ We conclude that the iPhone is an equivalent Cobb measurement tool to the manual protractor, and measurement times are about 15% less. The widespread availability of inclinometer-equipped mobile phones and the ability to store measurements in later versions of the angle measurement software may make these new technologies attractive for clinical measurement applications.
-
Total disc arthroplasty (TDA) has been successfully used for monosegmental treatment in the last few years. However, multi-level TDA led to controversial clinical results. We hypothesise that: (1) the more artificial discs are implanted, the stronger the increases in spinal mobility and facet joint forces in flexion and extension; (2) deviations from the optimal implant position lead to strong instabilities. ⋯ The more artificial discs are implanted, the stronger the motion increase in flexion and extension was predicted with respect to the intact condition. Deviations from the optimal implant position lead to unfavourable kinematics, to high facet joint forces and even to lift-off phenomena. Therefore, multilevel TDA should, if at all, only be performed in appropriate patients with good muscular conditions and by surgeons who can ensure optimal implant positions.
-
Various ball and socket-type designs of cervical artificial discs are in use or under investigation. Many artificial disc designs claim to restore the normal kinematics of the cervical spine. What differentiates one type of design from another design is currently not well understood. ⋯ For both spherical and oval designs, the facet loads were lower for the designs with an inferior ball component. The capsule ligament strains were lower for the oval design with an inferior ball component. Overall, the oval design with an inferior ball component, produced motion, facet loads, implant stresses and capsule ligament strains closest to the intact spine, which may be key to long-term implant survival.