European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
While allowing the greatest range of axial rotation of the entire spine with 40° to each side, gradual restraint at the extremes of motion by the alar ligaments is of vital importance. In order for the ligaments to facilitate a gradual transition from the neutral to the elastic zone, a complex interaction of axial rotation and vertical translation via the biconvex articular surfaces is essential. The aim of this investigation is to establish a geometrical model of the intricate interaction of the alar ligaments and vertical translatory motion of C1/C2 in axial rotation. ⋯ The biconvex configuration of the atlanto-axial joints is an integral feature of the functionality of upper cervical spine as it allows gradual vertical translation of the atlas against the axis during axial rotation, with gradual tensing of the alar ligaments. Vertical translation on its own, however, does not explain the tolerance of the alar ligaments towards the maximum of 40° of rotation and is most likely synergistic with the effects of the coupled motion of occipitocervical extension during rotation.
-
Comparative Study
Comparative effectiveness research across two spine registries.
Comparative effectiveness research in spine surgery is still a rarity. In this study, pain alleviation and quality of life (QoL) improvement after lumbar total disc arthroplasty (TDA) and anterior lumbar interbody fusion (ALIF) were anonymously compared by surgeon and implant. ⋯ Pain alleviation after TDA and ALIF was similar. Differences in surgeon's patient selection based on pain and QoL were revealed. Some surgeons seem to miss the full therapeutic potential of TDA by selecting patients with lower symptom severity.
-
The purpose of the study was to report radiological outcomes after total disc replacement (TDR) in the cervical spine through a 24 months follow-up (FU) prospective study with a special focus on sagittal alignment and kinematics at instrumented and adjacent levels. ⋯ Through this prospective study, we observed that cervical lordosis consistently increased after TDR. In addition, although ball-and-socket arthroplasty did not fully restore native segmental kinematics with significant reduction of motion in FE and consistent cranial shift of the COR, no significant changes in terms of ROM and CORs were observed at adjacent levels.
-
To gain insight into a new technology, a novel facet arthroplasty device (TFAS) was compared to a rigid posterior fixation system (UCR). The axial and bending loads through the implants and at the bone-implant interfaces were evaluated using an ex vivo biomechanical study and matched finite element analysis. Kinematic behaviour has been reported for TFAS, but implant loads have not. Implant loads are important indicators of an implant's performance and safety. The rigid posterior fixation system is used for comparison due to the extensive information available about these systems. ⋯ These results are most applicable to the immediate post-operative period prior to remodelling of the bone-implant interface since the UCR and TFAS implants are intended for different service lives (UCR--until fusion, TFAS--indefinitely). TFAS reproduced intact-like anterior column load-sharing--as measured by disc pressure. The highest bone-implant moment of 3.1 Nm was measured in TFAS and for the same loading condition the UCR interface moment was considerably lower (0.4 Nm). For other loading conditions, the differences between TFAS and UCR were smaller, with the UCR sometimes having larger values and for others the TFAS was larger. The long-term physiological meaning of these findings is unknown and demonstrates the need for a better understanding of the relationship between spinal arthroplasty devices and the host tissue as development of next generation motion-preserving posterior devices that hope to more accurately replicate the natural functions of the native tissue continues.
-
The SRS-24 questionnaire was originally validated using methods of classical test theory, but internal construct validity has never been shown. Internal construct validity, i.e. unidimensionality and linearity, is a fundamental arithmetic requirement and needs to be shown for a scale for summating any set of Likert-type items. Here, internal construct validity of the SRS-24 questionnaire in adolescent idiopathic scoliosis (AIS) patients is analyzed. ⋯ The SRS-24 score is a non-linear and multidimensional construct. Adding the items into a single value is therefore not supported and invalid in principle. Making profound changes to the questionnaire yields a score which fulfills the properties of internal construct validity and supports its use a change score for outcome measurement.