European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Comparative Study
Biomechanical comparison of vertebral augmentation with silicone and PMMA cement and two filling grades.
Vertebral augmentation with PMMA is a widely applied treatment of vertebral osteoporotic compression fractures. Subsequent fractures are a common complication, possibly due to the relatively high stiffness of PMMA in comparison with bone. Silicone as an augmentation material has biomechanical properties closer to those of bone and might, therefore, be an alternative. The study aimed to investigate the biomechanical differences, especially stiffness, of vertebral bodies with two augmentation materials and two filling grades. ⋯ This study for the first time directly compared the stiffness of silicone-augmented and PMMA-augmented vertebral bodies. Silicone may be a viable option in the treatment of osteoporotic fractures and it has the biomechanical potential to reduce the risk of secondary fractures.
-
To relate the progress of vertebral segmental stability after interbody fusion surgery with radiological assessment of spinal fusion. ⋯ In vivo vertebral segment stability, defined as a significant reduction in ROM, is achieved in an early stage of spinal fusion, well before a radiological bony fusion between the vertebrae can be observed. Therefore, plain radiography underestimates vertebral segment stability.
-
Anterior lumbar interbody fusion (ALIF) is an established treatment for structural instability associated with symptomatic disk degeneration (SDD). Stand-alone ALIF offers many advantages, however, it may increase the risk of non-union. Recombinant human bone morphogenetic protein-2 (BMP-2) may enhance fusion rate but is associated with postoperative complication. The optimal dose of BMP-2 remains unclear. This study assessed the fusion and subsidence rates of stand-alone ALIF using the SynFix-LR interbody cage with 6 ml/level of BMP-2. ⋯ The overall fusion rate of stand-alone ALIF using the SynFix-LR system with BMP-2 was 90.6 %, comparable with other published series. No BMP-2 related complication occurred at a dose of 6 mg/level. Degenerative spondylolisthesis and obesity seemed to increase the rate of implant subsidence, and thus we believe that adding posterior fusion for these cases should be considered.
-
Reduced strength and stiffness of lumbar spinal motion segments following laminectomy may lead to instability. Factors that predict shear biomechanical properties of the lumbar spine were previously published. The purpose of the present study was to predict spinal torsion biomechanical properties with and without laminectomy from a total of 21 imaging parameters. ⋯ Vertebral bone content and geometry, i.e. intervertebral disc width, frontal area and facet joint tropism, were found to be strong predictors of ETS, LTS and TMF following laminectomy, suggesting that these variables could predict the possible development of post-operative rotational instability following lumbar laminectomy. Proposed diagnostic parameters might aid surgical decision-making when deciding upon the use of instrumentation techniques.
-
To understand the relative histopathological effects of PEEK particulate debris when applied within the epidural versus the intervertebral disc space. We hypothesized that due to the avascular nature of the intervertebral disc acting as a barrier to immune cells, the intradiscal response would be less than the epidural response. ⋯ The results of this study are similar to past investigations of PEEK, whose results have not been shown to elicit an aggressive immune response. The degree to which these results will translate to the clinical environment remains to be established, but the pattern of subtle elevations in inflammatory cytokines indicated both a mild persistence of responses to PEEK debris, and that intradiscal implant debris will likely result in less inflammation than epidural implant debris.