European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Although the exact mechanisms that lead to degenerative disc disease (DDD) are not well understood, a significant genetic influence has been found. Focusing on DDD that occurs in young adults can be valuable in determining the exact role of genetic predisposition to DDD. ⋯ The study identifies specific SNP associations of five genes in young adults with severe lumbar disc degeneration. These five genes (COL11A1, ADAMTS5, CALM1, IL1F5 and COX2) have different functions in the matrix metabolism, intracellular signalling and inflammatory cascade. This shows that disc degeneration is a complex disease with an intricate interplay of multiple genetic polymorphisms.
-
To investigate the regional tensile properties of human annulus fibrosus (AF) and relate them to magnetic resonance imaging (MRI) findings. ⋯ Weakening of degenerated AF may be caused by accumulating structural defects, and enzymatic degradation. MRI has the potential to identify local weakening of the AF.
-
To analyze the effects of mobility of degenerated disc in the lower lumbar discs (L4-5 and L5-S1) on both whole lumbar motion and adjacent segment ROM. ⋯ Degenerated lumbar discs did not show hypermobility within functional ROM. Loss of segmental ROM from advanced disc degeneration did not cause an increase in the ROM of the superior adjacent segment in vivo. When the LLS had motion-lost, advanced disc degeneration, whole lumbar motion was significantly decreased and compensatory increase in ROM was accomplished by the ULS.
-
The ratio of notochordal (NC) cells to mature nucleus pulposus (MNP) cells in the nucleus pulposus varies with species, age and health. Studies suggest that loss of NC cells is a key component of intervertebral disc degeneration. However, few studies have examined the phenotypes of these two cell populations. Therefore, this study aimed to isolate NC and MNP cells from the same intervertebral disc and study phenotypic differences in extracellular matrix production and cell morphology in 3D culture over 7 days. ⋯ NC and MNP cells can be isolated from the same bovine disc and maintain their distinct phenotypes in 3D culture.
-
Quantitative MRI techniques were utilized to study intervertebral disc degeneration. Main focus was to develop a novel approach to quantify disc height loss associated with disc degeneration. Currently there is no universally accepted metric of degeneration based on measurement of disc height. Such quantitative imaging methods would complement qualitative visual assessment methods currently used and offer a valuable diagnostic tool. ⋯ This study provides new, unbiased quantitative imaging tools to assess disc degeneration. We observed that these quantitative MRI measures indicate a threshold beyond which major pathological changes take place concurrently. Combined information from DHI, ADC and T2 images construct a set of novel biomarkers that could be used to identify degenerating discs that are approaching the threshold and possibly intervene before major pathologic changes occur.