European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Comparative Study
The evolutionary importance of cell ratio between notochordal and nucleus pulposus cells: an experimental 3-D co-culture study.
Notochordal cells and nucleus pulposus cells are co-existing in the intervertebral disc at various ratios among different mammalians. This fact rises the question about the interactions and the evolutionary relevance of this phenomenon. It has been described that these relatively large notochordal cells are mainly dominant in early lifetime of all vertebrates and then differences occur with ageing. Human, cattle, sheep, and goat lose the cells with age, whereas rodents and lagomorphs maintain these throughout their lifetime. ⋯ The stimulating effect of NC was confirmed and the ideal ratio of NPC: NC was found to be ~50:50. This has direct implications for tissue-engineering approaches, which aim to repopulate discs with NP-like precursor cells.
-
Polymethylmethacrylate bone cements have proven performance in arthroplasty and represent a common bone filler, e.g. in vertebroplasty. However, acrylic cements are still subject to controversy concerning their exothermic reaction and osteo-integration potential. Therefore, we submitted a highly filled acrylic cement to a systematic investigation on the cell-material and tissue-implant response in vitro and in vivo. ⋯ Contrary to the established opinion concerning bony tissue response to implanted acrylic bone cements, we observed an early cell-implant in vitro interaction leading to cell growth and differentiation and significant signs of osteo-integration for this acrylic cement using standardized methods. Few outlined limitations, such as the use of low cement volumes, have to be considered in the interpretation of the study results.
-
Thermoreversible hydrogels have potential in spine research as they provide easy injectability and mild gelling mechanism (by physical cross-link). The purpose of this study was to assess the potential of thermoreversible hyaluronan-based hydrogels (HA-pNIPAM) (pNIPAM Mn = 10, 20, 35 × 10(3) g mol(-1)) as nucleus pulposus cells (NPC) carrier. ⋯ A HA-pNIPAM composition suitable for nucleus pulposus repair that provides an injectable carrier for NPC, maintains their phenotype and promotes extracellular matrix generation was identified.