European journal of human genetics : EJHG
-
Marinesco-Sjögren syndrome (MSS), first described in 1931, is an autosomal recessive condition characterised by somatic and mental retardation, congenital cataracts and cerebellar ataxia. Progressive myopathy was later reported to be also a cardinal sign of MSS, with myopathic changes on muscle biopsies. Hypergonadotrophic hypogonadism and skeletal deformities related to pronounced hypotonia were also reported. ⋯ Patients of the two families presented with the strict clinical features of MSS. On the other hand, the study of two smaller French and Italian families, initially diagnosed as presenting an atypical MS syndrome, clearly excluded linkage from both the MSS locus on 5q31 and the CCFDN locus in 18qter. Patients of the two excluded families had all MSS features (but the myopathic changes) plus peripheral neuropathy and optic atrophy, and various combinations of microcornea, hearing impairment, seizures, Type I diabetes, cerebral atrophy and leucoencephalopathy, indicating that only the pure MSS syndrome is a homogeneous genetic entity.
-
Eur. J. Hum. Genet. · Apr 2003
Recent advances in the diagnosis of malignant hyperthermia susceptibility: how confident can we be of genetic testing?
Malignant hyperthermia (MH) is a condition that manifests in susceptible individuals only on exposure to certain anaesthetic agents. Although genetically heterogeneous, mutations in the RYR1 gene (19q13.1) are associated with the majority of reported MH cases. Guidelines for the genetic diagnosis for MH susceptibility have recently been introduced by the European MH Group (EMHG). ⋯ In five families a mutation-positive/IVCT-negative individual was observed, and in the other five families a mutation-negative/IVCT-positive individual was observed. These data represent the most comprehensive assessment of RYR1 mutation prevalence and genotype/phenotype correlation analysis and highlight the possible limitations of MH screening methods. The implications for genetic diagnosis are discussed.
-
Eur. J. Hum. Genet. · Mar 2002
A novel recessive hyperekplexia allele GLRA1 (S231R): genotyping by MALDI-TOF mass spectrometry and functional characterisation as a determinant of cellular glycine receptor trafficking.
Hyperekplexia or startle disease (stiff baby syndrome, STHE) is a hereditary neurological disorder characterised by an exaggerated startle response and infantile muscle hypertonia. Several autosomal dominant and recessive forms of the disorder have been associated with point mutations in GLRA1, the human gene encoding the alpha 1 subunit of the inhibitory glycine receptor. Here, we describe a recessive point mutation (C1073G) in exon 7 of GLRA1 leading to an amino acid exchange of serine 231 to arginine in transmembrane region TM1. ⋯ These studies demonstrate the broad applicability of MALDI-TOF-MS as a comparative screening tool applicable to the analysis of allelic gene variants. In comparison to the wild type alpha 1 subunit, biochemical, electrophysiological, and confocal microscopy data indicate a reduced integration of functional alpha 1(S231R) glycine receptors into the cell surface membrane upon recombinant expression. Apparently, the amino acid exchange S231R influences glycine receptor biogenesis and cellular trafficking by introducing a positive charge into transmembrane region TM1.
-
Eur. J. Hum. Genet. · Dec 2001
Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia.
Myotonia congenita is a non-dystrophic muscle disorder affecting the excitability of the skeletal muscle membrane. It can be inherited either as an autosomal dominant (Thomsen's myotonia) or an autosomal recessive (Becker's myotonia) trait. Both types are characterised by myotonia (muscle stiffness) and muscular hypertrophy, and are caused by mutations in the muscle chloride channel gene, CLCN1. ⋯ In two probands, three mutations cosegregated with myotonia. No CLCN1 mutations were identified in two families. Our data support the presence of genetic heterogeneity and additional modifying factors in myotonia congenita.
-
Eur. J. Hum. Genet. · Apr 2001
An alpha1-antitrypsin enhancer polymorphism is a genetic modifier of pulmonary outcome in cystic fibrosis.
Lung disease is the direct cause of death in over 90% of cystic fibrosis (CF) patients. Excess neutrophil elastase is an important determinant of pulmonary disease in CF. alpha1-antitrypsin (AAT), also known as alpha1-proteinase inhibitor (alpha1PI) is a major modulator of elastase activity. We investigated the hypothesis that an enhancer polymorphism in the AAT gene would contribute to pulmonary prognosis in CF. ⋯ These trends were also observed in a tightly matched sub-set of CF genotypes of similar age and sex, thus confirming that these effects were independent of the CF genotype. These results indicate that this AAT enhancer polymorphism is associated with better pulmonary prognosis in CF. Though the number of CF patients with the polymorphism is small, and these data need to be confirmed in larger studies, they suggest that a cautious approach should perhaps be taken to treatment of CF patients with supplemental AAT.