Stem cells
-
Human induced pluripotent stem cells (iPSCs) and genome editing provide a precise way to generate gene-corrected cells for disease modeling and cell therapies. Human iPSCs generated from sickle cell disease (SCD) patients have a homozygous missense point mutation in the HBB gene encoding adult β-globin proteins, and are used as a model system to improve strategies of human gene therapy. We demonstrate that the CRISPR/Cas9 system designer nuclease is much more efficient in stimulating gene targeting of the endogenous HBB locus near the SCD point mutation in human iPSCs than zinc finger nucleases and TALENs. ⋯ We also detected the 16-kDa β-globin protein expressed from the corrected HBB allele in the erythrocytes differentiated from genome-edited iPSCs. Our results represent a significant step toward the clinical applications of genome editing using patient-derived iPSCs to generate disease-free cells for cell and gene therapies. Stem Cells 2015;33:1470-1479.
-
Clinical Trial
Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months.
Degenerative disc disease (DDD) induces chronic back pain with limited nonsurgical options. In this open label pilot study, 26 patients (median age 40 years; range 18-61) received autologous bone marrow concentrate (BMC) disc injections (13 one level, 13 two levels). Pretreatment Oswestry disability index (ODI) and visual analog scale (VAS) were performed to establish baseline pain scores (average 56.5 and 79.3, respectively), while magnetic resonance imaging was independently scored according to the modified Pfirrmann scale. ⋯ Although all subjects presented a substantial reduction in pain, patients receiving greater than 2,000 CFU-F/ml experienced a significantly faster and greater reduction in ODI and VAS. Subjects older than 40 years who received fewer than 2,000 CFU-F/ml experienced an average pain reduction of 33.7% (ODI) and 29.1% (VAS) at 12 months, while all other patients' average reduction was 69.5% (ODI, p = .03) and 70.6% (VAS, p = .01). This study provides evidence of safety and feasibility in the nonsurgical treatment of DDD with autologous BMC and indicates an effect of mesenchymal cell concentration on discogenic pain reduction.
-
Parathyroid hormone (PTH) stimulates hematopoiesis in mouse models. The involvement of osteoblasts in this process has been well investigated; however, the effects of PTH on human hematopoiesis and bone marrow mesenchymal stromal cells (BM-MSCs) are unclear. Here, we show that BM-MSCs contribute to the hematopoiesis-stimulating effects of PTH via upregulation of cadherin-11 (CDH11). ⋯ The number of hematopoietic cells in BM and the number of red blood cells in peripheral blood were higher in PTH-treated mice than in control mice. Our results demonstrate that PTH stimulates hematopoiesis through promoting the upregulation of CDH11 expression in BM-MSCs, at least in part. PTH treatment may be an effective strategy to enhance the ability of BM-MSCs to support hematopoiesis.
-
Mesenchymal stem cells (MSCs) are known to have a potential for articular cartilage regeneration. However, most studies focused on focal cartilage defect through surgical implantation. For the treatment of generalized cartilage loss in osteoarthritis, an alternative delivery strategy would be more appropriate. ⋯ Arthroscopy showed that the size of cartilage defect decreased in the medial femoral and medial tibial condyles of the high-dose group. Histology demonstrated thick, hyaline-like cartilage regeneration. These results showed that intra-articular injection of 1.0 × 10(8) AD MSCs into the osteoarthritic knee improved function and pain of the knee joint without causing adverse events, and reduced cartilage defects by regeneration of hyaline-like articular cartilage.
-
Bone marrow mesenchymal stromal cells (BMSCs) have been used to treat acute graft-versus-host disease (GVHD) and other complications following allogeneic hematopoietic stem cell transplantation (SCT). We conducted a phase I trial using third party, early passage BMSCs for patients with steroid-refractory GVHD, tissue injury, or marrow failure following SCT to investigate safety and efficacy. To identify mechanisms of BMSC immunomodulation and tissue repair, patients were serially monitored for plasma GVHD biomarkers, cytokines, and lymphocyte phenotype. ⋯ Cytokine changes also segregated with survival. These results confirm that BMSCs are associated with rapid clinical and biomarker responses in GVHD and tissue injury. However, BMSCs were ineffective in patients with prolonged GVHD with lower lymphocyte counts, which suggest that effective GVHD control by BMSCs requires a relatively intact immune system.