Cell biology international
-
As an outcome of The 2009 Nobel Prize in Physiology or Medicine, a connection has been highlighted between the length of telomeres and epigenetic effects, such as intensive changes in lifestyle and nutrition as well as behavioural and psychological factors. In this review, the various elements of molecular, cell biological, nutritional and lifestyle changes are introduced and discussed.
-
The objective of this work was initially to investigate the effects on skin wound healing process by local injection of HSP47 recombinant plasmid in an alloxan-induced diabetic rat model and assess the possibility and utility of gene therapy based on HSP47 plasmid to improve the diabetic skin wound healing. Rats were injected intraperitoneally with alloxan (120mg/kg) to induce diabetes. The fragment containing the rat 47kDa heat shock protein (HSP47) gene lacking its own promoter was cloned into plasmids containing a promoter and green fluorescent protein (GFP). ⋯ Immunohistochemistry, quantitative fluorescent RT-PCR, and Western blotting 3-5 days after plasmid injection were performed to measure the expression changes of HSP47 and collagen I. The results demonstrate an increase of HSP47 levels in vitro in 3T3 fibroblast cells and in vivo in diabetic rat after treatment with plasmids expressing HSP47. The level of collagen I around the wound during the repair process was higher in the treated group than that in the control group, indicating that the constructs may have use in human gene therapy in cases of impaired skin wound healing in diabetes.
-
Endophytic fungi (Fusarium mairei) culture broth (EFCB) was added to cell suspension cultures of Taxus cuspidata. After 5 days, cultures of T. cuspidata given 4 ml of EFCB produced a maximal yield of 6.11 mg/l paclitaxel, with a release ratio of 75%, 2- and 6.8-fold, respectively, greater than the controls. ⋯ However, when the supernatant of Taxus cell suspension cultures from day 20 was added to the paclitaxel-producing medium, the biomass of fungi decreased by 24% and the yield of paclitaxel by 45%. In a co-culture system of plant and fungus, the yield of paclitaxel (12.8 mg/l) was >2-fold higher than that in the EFCB-treatment system.
-
The influences of salicylic acid (SA) on taxol production and isopentenyl pyrophosphate (IPP) biosynthesis pathways in suspension cultures of Taxus chinensis var. mairei were investigated by adding SA and mevastatin (MVS), a highly specific inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase in the mevalonate pathway for IPP biosynthesis, into the culture systems. The cell death and taxol production were induced upon the introduction of SA, and 20mg/l was proved to be the optimal SA concentration in terms of the less damage to Taxus cells and marked activation of phenylalanine ammonia lyase (PAL). In the coexistence of SA (20mg/l) and MVS (100 nmol/l), the taxol content (1.626 mg/g dry wt) was higher than that (0.252 mg/g dry wt) of the MVS-treated system but almost equal to that (1.581 mg/g dry wt) of the SA-treated system. It is thus inferred that the activated non-mevalonate pathway should be responsible for the formation of IPP in taxol biosynthesis in the presence of SA.
-
Epithelial sodium channel (ENaC) plays a crucial role in controlling sodium reabsorption in the kidney keeping the normal blood pressure. We previously reported that the expression of ENaC mRNA in the kidney of Dahl salt-sensitive (DS) rats was abnormally regulated by aldosterone, however it is unknown if dietary sodium affects the expression of ENaC and serum and glucocorticoid-regulated kinase 1 (SGK1), which plays an important role in ENaC activation, in DS rats. In the present study, we investigated whether dietary sodium abnormally affects the expression of ENaC and SGK1 mRNA in DS rats. ⋯ The expression of beta- and gamma-ENaC mRNA in DS rats was also abnormally increased by high sodium diet unlike DR rats. The expression of SGK1 mRNA was elevated by high sodium diet in DS rats, but it was decreased in DR rats. These observations indicate that the expression of ENaC and SGK1 mRNA is abnormally regulated by dietary sodium in salt-sensitively hypertensive rats, and that this abnormal expression would be one of the factors causing salt-sensitive hypertension.