Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society
-
Hypertrophic scar is a major clinical outcome of deep-partial thickness to full thickness thermal burn injury. Appropriate animal models are a limitation to burn research due to the lack of, or access to, animal models which address the endpoint of hypertrophic scar. Lower species, such as rodents, heal mainly by contracture, which limits the duration of study. ⋯ A quantifiable hypertrophic scar, measured by histology as the scar elevation index, was present in both 20 seconds burn wounds and excisional wounds at day 35. ImageJ measurements revealed that the 20 seconds burn wound scars were 22% larger than the excisional wound scars and the 20 seconds burn scar area measurements from histology were 26% greater than in the excisional wound scar. The ability to measure both burn progression and scar hypertrophy over a 35-day time frame suits this model to screening early intervention burn wound therapeutics or scar treatments in a burn-specific scar model.
-
Examination of clinical samples indicates bacterial biofilms are present in the majority of chronic wounds, and substantial evidence suggests biofilms contribute significantly to delayed healing. Bacteria in biofilms are highly tolerant of antimicrobials, and little data exist to guide the choice of anti-biofilm wound therapy. Cadexomer iodine (CI) was recently reported to have superior efficacy compared to diverse wound dressings against Pseudomonas aeruginosa biofilms in an ex vivo model. ⋯ Given the promising in vitro activity, CI was tested in an established mouse model of MRSA wound biofilm. CI had significantly greater impact on MRSA biofilm in mouse wounds than silver dressings or mupirocin based on Gram-stained histology sections and quantitative microbiology from biopsy samples (>4 log reduction in CFU/g vs. 0.7-1.6, p < 0.0001). The superior efficacy for CI in these in vitro and in vivo models suggests CI topical products may represent a better choice to address established bacterial biofilm in chronic wounds.
-
Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obtained by dissociation of adipose tissue, either enzymatically or mechanical. ⋯ The FAT-stromal vascular fraction is an enrichment of extracellular matrix containing a microvasculature and culturable adipose derived stromal cells. Adipose derived stromal cells isolated from FAT-stromal vascular fraction did not differ from adipose derived stromal cells isolated from the control group in CD-surface marker expression, differentiation and colony forming unit capacity. The FAT procedure is a rapid effective mechanical dissociation procedure to generate FAT-stromal vascular fraction ready for injection with all its therapeutic components of adipose tissue: it contains culturable adipose derived stromal cells embedded in their natural supportive extracellular matrix together with the microvasculature.
-
Postburn pruritus is a common distressing sequela of burn wounds. Empirical antipruritic treatment often fails to have a satisfactory outcome, as the mechanism of it has not been fully elucidated. The aim of this study was to evaluate the manifestation of transient receptor potential vanilloid 3 (TRPV3), transient receptor potential ankyrin 1 (TRPA1), and other related receptors in postburn pruritus. ⋯ Additionally, mRNA and protein levels of protease-activated receptor 2 (PAR2) and neurokinin-1 receptor (NK1R) were also significantly increased in pruritic burn scars. In conclusion, it was confirmed that TRPV3, PAR2, and NK1R were highly expressed in pruritic burn scars. These results may help determine a novel mechanism for postburn pruritus.
-
Randomized Controlled Trial Multicenter Study
Long-term scar quality in burns with three distinct healing potentials: A multicenter prospective cohort study.
The laser Doppler imager is used in cases of indeterminate burn depth to accurately predict wound healing time at an early stage. The laser Doppler imager classifies burns into three estimated healing potentials as follows: high, <14 days; intermediate, 14-21 days; and low, >21 days. At this time, the relationship between these healing potentials and long-term scar quality is unknown. ⋯ Scar quality was very similar in high and intermediate healing potential wounds. No positive effects were found on scar quality or on healing time in surgically treated wounds with intermediate healing potential, advocating a conservative approach. Further studies should focus on the optimal timing of surgery in low healing potential wounds.