Biological & pharmaceutical bulletin
-
The present study was designed to investigate the ameliorative potential of pralidoxime in tibial and sural nerve transection-induced neuropathy in rats. Tibial and sural nerve transection was performed by sectioning tibial and sural nerve portions (2 mm) of the sciatic nerve, and leaving the common peroneal nerve intact. The pinprick, acetone, hot and cold tail immersion tests were performed to assess the degree of motor functions, mechanical hyperalgesia, cold allodynia, heat and cold hyperalgesia respectively. ⋯ However, administration of pralidoxime (10, 20 mg/kg intraperitoneally (i.p.)) for 14 d attenuated tibial and sural nerve transection-induced cold allodynia, mechanical, hot and cold hyperalgesia. Furthermore, pralidoxime also attenuated tibial and sural nerve transection induced increase in oxidative stress and calcium levels. It may be concluded that pralidoxime has ameliorative potential in attenuating the painful neuropathic state associated with tibial and sural nerve transection, which may possibly be attributed to decrease in oxidative stress and calcium levels.
-
The radical scavenging effects and protective activities against oxidative stress of Korean mistletoe (Viscum album coloratum) lectin were investigated in vitro and with a cellular system using LLC-PK(1) renal epithelial cells. The Korean mistletoe lectin (KML) showed 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity with an IC(50) value of 42.6 microg/ml. It also exerted nitric oxide (NO), superoxide anion (O(2)(-)), and hydroxyl radical scavenging activities in concentration-dependent manners. ⋯ Furthermore, overexpressions of cyclooxygenase-2 and inducible NO synthase induced by SIN-1 were observed, but KML down-regulated the expression levels of both genes. KML also reduced SIN-1-induced nuclear factor kappa B expression and the phosphorylation of inhibitor kappa B alpha in LLC-PK(1) cells. These results indicate that KML has protective activities against oxidative damage induced by free radicals.