Der Anaesthesist
-
The Federal Institute for Drugs and Medical Devices (BfArM) was notified of an event in which it was not possible to sufficiently ventilate a patient suffering a severe asthma attack. It turned out that the ventilation pressures used by the device for pressure-controlled ventilation were below the values set by the user, which the user was not aware of. The ventilation pressures chosen by the user exceeded the preset alarm limits of the ventilator. This pressure and alarm management significantly differed from that of other ventilators used in the hospital. This and similar incident reports suggest that safely operating medical devices for anesthesia and intensive care may be impaired when different models of a device are used within a hospital. If different models are used, more device information needs to be stored in memory. Existing knowledge on human memory suggests that the more individual memory items (e. g. different operating rules) are stored, the greater the risk of memory interference and hence of impaired retrieval, particularly if the different items are associated with overlapping retrieval cues. This is the case when different devices are used for a single functional purpose under identical or similar circumstances. ⋯ Using different device models for anesthesia and intensive care seems to be common in many German hospitals, particularly for ventilators. An association between device diversity and problems operating a device is plausible, given the functioning of human memory. This topic should be investigated by future studies in order to identify factors that may contribute to such problems and possible solutions for clinical settings. Likewise, the potential benefits of having different device models at one's disposal should be evaluated. To pinpoint the measures that will be most effective given the specific settings of the individual hospital, all underlying clinical and economic considerations must be carefully balanced against the associated potential risks.
-
Review Meta Analysis
[Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].
An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. ⋯ Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as studies evaluating alternatives to the finger for capturing the raw signals for hemodynamic assessment, and, finally, studies evaluating technologies based on a flow time measurement are current topics of clinical research.
-
Sepsis-induced changes in pharmacokinetic parameters are a well-known problem in intensive care medicine. Dosing of antibiotics in this setting is therefore challenging. Alterations to the substance-specific kinetics of anti-infective substances have an effect on the distribution and excretion processes in the body. ⋯ Current international guidelines recommend individualized dosing strategies and adaptation of doses according to measured serum levels and pharmacokinetic/pharmacodynamic (PK/PD) parameters as concepts to optimize anti-infective therapy in the critically ill. Likewise, the recommendation to adjust the administration form of beta-lactam antibiotics to prolonged or continuous infusion can be found increasingly more often in the literature. This article reviews the background of the individual dosing in intensive care patients and their applicability to the clinical routine.
-
Entrustable professional activities (EPAs) are characterized as self-contained units of work in a given typical clinical context, which may be entrusted to a trainee for independent execution at a certain point of training. An example could be the intraoperative anesthesia management of an ASA 1 patient for an uncomplicated surgical intervention as an EPA in early postgraduate anesthesia training. ⋯ It is a more holistic view of a trainee. Experience with this new concept is so far limited, therefore, further studies are urgently needed to determine whether and how EPAs can contribute to improvements in further training.