Journal of chromatography. A
-
Performance reference compounds (PRCs) can be spiked into passive samplers prior to deployment. If the dissipation kinetics of PRCs from the sampler corresponds to analyte accumulation kinetics, then PRCs can be used to estimate in-situ sampling rates, which may vary depending on environmental conditions. Under controlled laboratory conditions, the effectiveness of PRC corrections on prediction accuracy of water concentrations were evaluated using nylon organic chemical integrative samplers (NOCIS). ⋯ Regardless, results suggest that PRC corrections were beneficial for NOCIS configurations containing Oasis HLB; however, due to differences in flow dependencies of analyte sampling rates and PRC elimination rates across the investigated flow regimes, the use of multiple PRC corrections was necessary. As such, a "Best-Fit PRC" approach was utilized for Oasis HLB corrections using caffeine-(13)C3, DIA-d5, or no correction based on the relative flow dependencies of analytes and these PRCs. Although PRC corrections reduced the variability when in-situ conditions differed from laboratory calibrations (e.g. static versus moderate flow), applying PRC corrections under similar flow conditions increases variability in estimated values.
-
Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. ⋯ Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51).
-
In this paper, heart-cutting two-dimensional GC/MS (GC-GC/MS) method in combination with a simple sample collection procedure was developed for the determination of 6 nitroalkanes in mainstream cigarette smoke. The method could remove large amounts of impurities on-line in the first polar column by heart-cuts and separate from the left interferences in a second mid-polar column. And the target compounds could be focused at the inlet of the second column by cryo-concentration. ⋯ The validation results also indicate that the method has high accuracy (spiked recoveries between 84% and 102%) and good repeatability (RSD between 7.2% and 9.4%). The developed method was applied to analyze 1 Kentucky reference cigarette (3R4F) and 10 Chinese commercial brands of cigarettes. The research results indicated that nitromethane, nitroethane, 2-nitropropane and 1-nitro-n-pentane were detected in mainstream cigarette smoke, but 1-nitro-n-butane and 2-nitropropane, which were reported by one previous study, were not detected in all cigarette samples.
-
In this study we developed a fully automated three-dimensional (3D) liquid chromatography methodology-comprising hydrophilic interaction separation as the first dimension, strong cation exchange fractionation as the second dimension, and low-pH reversed-phase (RP) separation as the third dimension-in conjunction downstream with additional complementary porous graphitic carbon separation, to capture non-retained hydrophilic analytes, for both shotgun proteomics and N-glycomics analyses. The performance of the 3D system alone was benchmarked through the analysis of the total lysate of Saccharomyces cerevisiae, leading to improved hydrophilic peptide coverage, from which we identified 19% and 24% more proteins and peptides, respectively, relative to those identified from a two-dimensional hydrophilic interaction liquid chromatography and low-pH RP chromatography (HILIC-RP) system over the same mass spectrometric acquisition time; consequently, the 3D platform also provided enhanced proteome and protein coverage. When we applied the integrated technology to analyses of the total lysate of primary cerebellar granule neurons, we characterized a total of 2201 proteins and 16,937 unique peptides for this primary cell line, providing one of its most comprehensive datasets. Our new integrated technology also exhibited excellent performance in the first N-glycomics analysis of cynomolgus monkey plasma; we successfully identified 122 proposed N-glycans and 135 N-glycosylation sites from 122 N-glycoproteins, and confirmed the presence of 38 N-glycolylneuraminic acid-containing N-glycans, a rare occurrence in human plasma, through tandem mass spectrometry for the first time.
-
Rapid and timely diagnosis of infectious diseases is a critical determinant of clinical outcomes and general public health. For the detection of various pathogens, microfluidics-based platforms offer many advantages, including speed, cost, portability, high throughput, and automation. ⋯ The key aspects of such technologies for the development of a fully integrated POC platform are introduced, including sample preparation, on-chip nucleic acid analysis and immunoassay, and system integration/automation. The current challenges to practical implementation of this technology are discussed together with future perspectives.