Bioorganic & medicinal chemistry
-
Pain relief achieved by co-administration of drugs acting at different targets is more effective than that obtained with conventional MOR selective agonists usually associated to relevant side effects. It has been demonstrated that simultaneously targeting different opioid receptors is a more effective therapeutic strategy. Giving the promising role for DOR in pain management, novel LP1-based analogues with different N-substituents were designed and synthesized with the aim to improve DOR profile. ⋯ Measurements of their antinociceptive effect was evaluated by mice radiant tail flick test displaying for compounds 6, 7 and 9 ED50 values of 1.3, 1.0 and 0.9mg/kg, i.p., respectively. Moreover, the antinociceptive effect of compound 9 was longer lasting with respect to LP1. In conclusion the N-substituent nature of compounds 6, 7 and 9 shifts the DOR profile of LP1 from antagonism to agonism.
-
Bacterial chemical communication, through a process called quorum sensing (QS), plays a central role in infection in numerous bacterial pathogens. Quorum sensing in Pseudomonas aeruginosa employs a series of small molecule receptors including the master QS regulator, LasR. In this study we investigate a non-natural triaryl series of LasR ligands using a combination of structure activity relationship studies and computational modeling. These studies have enabled the identification of key structural requirements for ligand binding and have revealed a new strategy for inducing the therapeutically relevant antagonism of LasR.
-
Comparative Study
The discovery of 2,5-isomers of triazole-pyrrolopyrimidine as selective Janus kinase 2 (JAK2) inhibitors versus JAK1 and JAK3.
Members of the Janus kinase (JAK) family are potential therapeutic targets. Abnormal signaling by mutant JAK2 is related to hematological malignancy, such as myeloproliferative neoplasms (MPNs), and tyrosine kinase inhibitor (TKI)-resistance in non-small cell lung cancer (NSCLC). We discovered a potent and highly selective inhibitor of JAK2 over JAK1 and -3 based on the structure of 4-(2,5-triazole)-pyrrolopyrimidine. ⋯ Compound 54 also exhibited an equivalent inhibition of wild type JAK2 and the V617F mutant. Moreover, 54 inhibited the proliferation of HEL 92.1.7 cells, which carry JAK2 V617F, and gefitinib-resistant HCC827 cells. Compound 54 also suppressed STAT3 phosphorylation at Y705.
-
Severe acute respiratory syndrome (SARS) led to a life-threatening form of atypical pneumonia in late 2002. Following that, Middle East Respiratory Syndrome (MERS-CoV) has recently emerged, killing about 36% of patients infected globally, mainly in Saudi Arabia and South Korea. ⋯ Docking studies show that a carboxylate present at either R(1) or R(4) destabilizes the oxyanion hole in the 3CL(pro). Interestingly, 3f, 3g and 3m could inhibit both NA and 3CL(pro) and serve as a starting point to develop broad-spectrum antiviral agents.
-
Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. ⋯ In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre-clinical drug candidates.