Bioorganic & medicinal chemistry
-
Three new depsipeptides, fijimycins A-C (1-3), together with the known etamycin A (4), were isolated and identified from the fermentation broth of strain CNS-575, a Streptomyces sp. cultured from a marine sediment sample collected off Nasese, Fiji. The planar structures of the new fijimycins were assigned by combined interpretation of NMR and MS/MS spectroscopic data. ⋯ The absolute configurations of the component amino acids were established using the Marfey's method. Fijimycins A-C, and etamycin A, were shown to possess significant in vitro antibacterial activity against three methicillin-resistant Staphylococcus aureus (MRSA) strains with MIC(100) values between 4 and 16 μg mL(-1).
-
Amide-type pipecoloxylidide local anesthetics, bupivacaine, and ropivacaine, show cardiotoxic effects with the potency depending on stereostructures. Cardiotoxic drugs not only bind to cardiomyocyte membrane channels to block them but also modify the physicochemical property of membrane lipid bilayers in which channels are embedded. The opposite configurations allow enantiomers to be discriminated by their enantiospecific interactions with another chiral molecule in membranes. ⋯ The rank order of membrane interactivity agreed with that of known cardiotoxicity. The stereoselective membrane interactions determined by cholesterol with higher chirality appears to be associated with the stereoselective cardiotoxic effects of local anesthetics. The stereostructure and membrane interactivity relationship supports the clinical use and development of S(-)-enantiomers to decrease the adverse effects of pipecoloxylidide local anesthetics on the cardiovascular system.
-
Neuropathic pain is a serious chronic disorder caused by lesion or dysfunction in the nervous systems. Endogenous nociceptin/orphanin FQ (N/OFQ) peptide and N/OFQ peptide (NOP) receptor [or opioid-receptor-like-1 (ORL1) receptor] are located in the central and peripheral nervous systems, the immune systems, and peripheral organs, and have a crucial role in the pain sensory system. ⋯ In this study, design, synthesis, and structure-activity relationships of peripheral/spinal cord-targeting non-peptide NOP receptor agonist were investigated for the treatment of neuropathic pain, which resulted in the discovery of highly selective and potent novel NOP receptor full agonist {1-[4-(2-{hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl}-1H-benzimidazol-1-yl)piperidin-1-yl]cyclooctyl}methanol 1 (HPCOM) as systemically (subcutaneously) potent new-class analgesic. Thus, 1 demonstrates dose-dependent inhibitory effect against mechanical allodynia in chronic constriction injury-induced neuropathic pain model rats, robust metabolic stability and little hERG potassium ion channel binding affinity, with its unique and potentially safe profiles and mechanisms, which were distinctive from those of N/OFQ in terms of site-differential effects.
-
Imatinib, dasatinib, sunitinib, CEP-701, and PKC-412, ATP-competitive small molecule inhibitors of type III receptor tyrosine kinases c-KIT and/or FLT3, were evaluated for binding to the closely related receptor, FMS, by docking into models of inactive and active conformations of the FMS kinase domain. To confirm the docking predictions, the drugs were tested for their activity and selectivity in inhibiting cell proliferation and FMS phosphorylation upon stimulation by the FMS ligand, CSF-1. All five drugs inhibited FMS activity. Imatinib, dasatinib and CEP-701 represent three different types of interactions determining drug potency and selectivity.
-
Amyloid beta (Abeta), a key molecule in the pathogenesis of Alzheimer's disease (AD), is derived from the amyloid precursor protein (APP) by sequential proteolysis via beta- and gamma-secretases. Because of their role in generation of Abeta, these enzymes have emerged as important therapeutic targets for AD. In the case of gamma-secretase, progress has been made towards designing potent inhibitors with suitable pharmacological profiles. ⋯ Furthermore, we reported a approximately 5-fold difference in the selective inhibition of APP versus Notch processing via gamma-secretase following treatment with SB225002. Herein we describe the synthesis and optimization of SB225002. By determination of the structure-activity relationship (SAR), we derived small molecules that inhibit Abeta40 production with IC(50) values in the sub-micromolar range in a cell-based assay and also validated the potential of CXCR2 as a new target for therapeutic intervention in AD.